Comparison of Classical and Quantum Bremsstrahlung
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Abstract. Classical features persist in bremsstrahlung at surprisingly high energies, while quantum features are present at low energies.  For Coulomb bremsstrahlung this is related to the similar properties of Coulomb scattering.  For bremsstrahlung in a screened potential, the low energy spectrum and angular distribution exhibit structures.  In quantum mechanics these structures are associated with zeroes of particular angular-momentum transfer matrix elements at particular energies, a continuation of the Cooper minima in atomic photoeffect. They lead to transparency windows in free-free absorption.  The trajectories of these zeroes in the plane of initial and final transition energies (bound and continuum) has been explored.  Corresponding features have now been seen in classical bremsstrahlung, resulting from reduced contributions from particular impact parameters at particular energies.  This has suggested the possibility of a more unified treatment of classical and quantum bremsstrahlung, based on the singularities of the scattering amplitude in angular momentum.
I. INTRODUCTION

We here describe current issues in the study of classical and quantum bremsstrahlung, particularly structures associated with "zeroes", and how the two descriptions are related.

We study classical and quantum bremsstrahlung from neutral atoms and ions and investigate the origins of the structures in the energy dependence of the differential cross section and the asymmetry parameter, using soft-photon limit results in terms of elastic scattering. These structures result from the suppression of contributions to the radiation from certain ranges of angular momenta at certain energies. This corresponds to the association of structures in quantum bremsstrahlung with zeros in certain angular momentum matrix elements at certain energies. (Our discussion here is based on Reference [1])

The angular momentum changing quantum radiation transition matrix elements may be considered as a function of initial and final electron energies. One may consider the trajectories of zeroes in the plane of the two energies. It should be understood that the behavior of zeroes, while leading to important consequences, is also a convenient surrogate for the more general study of the behavior of matrix elements.

We consider the problem of the correspondence between classical and quantum description of non-relativistic electron-atom collisions with photon emission. Our aim here is to explain how the classical predictions can appear from quantum calculations even when one is far from the conventional classical limit. For further discussion see [2].

II. CLASSICAL DESCRIPTION AND ZEROES

Oscillations as a function of incident electron energy E in the differential cross section and the asymmetry parameter are characteristic of the low incident electron energy region (for example, up to 150 eV for Al) of the bremsstrahlung from neutral atoms. These structures were first noticed in the asymmetry parameter  [3], considered as a function of E for various fixed ratios of photon energy, and they were also identified in the differential cross section [4]. Both results were obtained using a classical description of the bremsstrahlung process [5, 6]. Similar structures have also been observed using a quantum description [7, 8]. The quantum structures are located at approximately the same energies as the classical ones [8].

A remarkable fact is that both the quantum and classical oscillatory behavior is largely independent of the fraction of incident energy which is radiated, and it is well characterized by the behavior in the soft-photon limit. In the classical case this can be understood as being due to the fact that the radiation is mainly emitted in the vicinity of the turning point of electron motion (when its acceleration is greatest), where the electron kinetic energy is much larger than the initial electron energy, and hence it is much larger than all physically allowed energies of radiation [9]. Thus, explaining the soft-photon limit behavior should provide some general understanding of low-energy bremsstrahlung.

In previous work [8] we showed that the quantum structures are related to the zeros of the radial matrix elements which occur for particular angular momenta at particular energies. That is, in the quantum case, the lack of contribution from some of the dominant radiative transitions (due to zeros in corresponding matrix elements) results in the observed structures in the energy dependence of the bremsstrahlung cross section and asymmetry parameter. We now see that the classical structures have, essentially, the same origin as the quantum ones, namely, the lack of contribution from a certain range of angular momentum.  We can relate these structures to the behavior of the scattering angle in certain ranges of angular momentum as the incident energy changes.

A complete description of the classical bremsstrahlung formalism and the soft-photon limit of dipole radiation is given in [4]. An extensive analysis of classical bremsstrahlung in screened atomic potentials, under the assumption of energy loss independent trajectories, can be found in [1,2]. 

The doubly differential cross section describing the radiation emitted into a solid angle and a frequency interval is
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Here P2 is the Legendre polynomial and k is the azimuthal emission angle of the photon. The bremsstrahlung spectrum
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where e is the electron charge, m is the electron mass, v is the incident electron velocity at infinity, c is the velocity of light, a( is the Fourier transform of the electron acceleration, L is the electron angular momentum The asymmetry parameter a2, which characterizes the angular distribution of radiation, is given as 
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where in the soft-photon limit (s-ph) [4]
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Note the dominant contributions to these integrals will be at intermediate angles, since cross sections are small at large angles and (1-cos() suppresses small angle contributions. The quantum and classical cross sections and asymmetry parameters, compared for Al in Figures 1 and 2, agree well at higher electron energies. At lower energies both quantum and classical results exhibit structures, although quantitative agreement gets worse. Relations between the classical and quantum features may be discerned, although there are additional structures in the classical case. In the quantum case the structures are connected to the zeros in matrix elements of the dominant radiative transitions [6]. What are the origins of the structures in the classical case? 
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FIGURE 1. Energy dependence of the classical (thick curve) and quantum (thin curve bremsstrahlung cross section in the soft-photon limit, for Al in a Hartree–Fock potential. From [1].
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FIGURE 2. Energy dependence of the classical (thick curve) and quantum (thin curve) asymmetry parameter a2s-ph, for Al in a Hartree–Fock potential. From [1].

In the soft-photon case the scattering angle ((E,L) is the basic building block for all other physical quantities.  As an example we plot in Figure 3 the scattering angle, considered as a function of L , for a number of energies for Al. Examining the general behavior of the scattering angle with L as one varies E, one can identify four main features: rise, (smooth) maximum, divergence and (abrupt) decrease. 

Let us consider the impact of the features of the scattering angle on the bremsstrahlung cross section.  With increasing energy the spectrum rises to a peak, modulated by several oscillations. The amplitude of the oscillations increases with energy. The origin of these oscillations is in the lack of contributions to the integral Eq. (4) from some ranges of angular momentum, at certain electron energies. Such a phenomenon has a quantum mechanical analogue. In the quantum description, the electron angular momenta are quantized and the bremsstrahlung cross section is expressed in terms of a sum (rather than an integral) over L . At particular energies particular terms in the sum can vanish due to zeros in the radiation matrix elements. This leads to minima in the energy dependence of the quantum bremsstrahlung cross section [8].
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FIGURE 3. The scattering angle in Al as a function of L for Coulombic (broken curves) and screened (full curves) potentials, for a number of incident electron energies.

In the classical case, we do not see structures in the cross section if there is only a smooth maximum or an isolated divergence in L , but rather when there is a combination of these features. The structures only appear in a certain energy interval, which ranges from a few electron volts up to a few hundreds of electron volts, depending on the atom. 

III. QUANTUM TRAJECTORIES OF ZEROES

The quantum radiation transition matrix elements may be considered as a function of initial and final electron energies.  They are probably analytic except along the diagonal of equal initial and final electron energies (related to elastic scattering and Ramsauer-Townsend minima), although not represented by quadrature integrals over wave functions for many unbound negative energies. One may consider the trajectories of zeroes in the plane of the two energies.  These trajectories continue analytically from the regions of free-free transitions (bremsstrahlung and inverse bremsstrahlung) and of bound free transitions (photoeffect and direct radiative capture, where they become the familiar Cooper minima). For a general discussion see [10]. It should be understood that the behavior of zeroes, while leading to important consequences, is also a convenient surrogate for the more general study of the behavior of matrix elements.  For an example of such matrix element behavior, including trajectories of zeroes, see Fig. 4.
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FIGURE 4. The p-d transition matrix element multiplied by the factor of (p1-p2)2, as a function of electron momenta in d and p channels (p1 and p2, correspondingly)
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FIGURE 5. Trajectories of zeroes in p-d transitions for neutral and ionic Aluminum. The ordinate is the p-state electron momentum and the abscissa is the d state electron momentum, both in atomic units.

We have begun a study of the trajectories of zeroes in dipole free-free transitions.  In our initial work we have considered atoms of intermediate Z, both neutral atoms and ions, generating fixed Hartree-Fock potentials in which an additional continuum electron moves. For free-free transitions zeroes are observed in all atoms in the range Ne-Ar (the only exception is the p-d transition in Na, where there are no zeroes). In our preliminary work we can make the following statements:  

1) We can distinguish three general types of the trajectories: neutral, transitional and ionic. The first type occurs in neutral atoms, the second and third ones occur in ions.  We illustrate the three types of trajectories in Fig. 5.

2) In these elements zeroes are observed only in s-p and p-d transitions.

3) For s-p transitions zeroes occur only for neutral atoms and singly charged ionic species (with respectively neutral and ionic types of trajectories).

4) For p-d transitions zeroes occur even for atoms ionized as much as three and even four times. For neutral atoms we have the neutral type of trajectories, then with low ionicity it changes to the transitional type, and then to the ionic type when ionicity increases.

5) Trajectories are located closer to the origin ("shrinking") when ionicity grows.

Directions which remain to be investigated include the continuation into the bound-free region, the development of trajectories for larger angular momentum in higher Z, and the development of multiple trajectories in excited state atoms, expected in view of the corresponding phenomena in photoeffect. In terms of the relationship to photoeffect, Latter tail potentials should also be investigated.
IV. CLASSICAL-QUANTUM CORRESPONDENCE AND REGGE POLES

We consider the problem of the correspondence between classical and quantum description of non-relativistic electron-atom collisions with photon emission. Quite often classical mechanics give a rather good approximation to a quantum treatment, beyond the region of parameters where one might expect it to be rigorously applicable  (as, for example, in Coulomb scattering). Much less is known about the similarities of the general analytical structure of quantum and classical results for radiative processes in electron-atom scattering. Our aim here is to explain how the classical predictions can appear from quantum calculations even when one is far from the conventional classical limit.  The integral characteristics of processes are related to analyticity of solutions of the Schroedinger equation in the complex plane of the relevant parameter, i.e. energy or angular momentum.  The problem of the quantum-classical correspondence for the soft-photon limit of the bremsstrahlung process may be characterized in terms of non-analyticity of the scattering S-matrix in the complex l-plane [2].

The non-relativistic quantum and classical soft-photon limits of the electron-atom bremsstrahlung cross section may be written in a remarkably similar form:
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where (l is the quantum scattering phase-shift, ((L) is the classical scattering angle as a function of classical orbital momentum L. The correspondence becomes quite transparent if one recalls the classical equivalence relation [11]
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One can make the further approximation, 
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in (6b) for the derivative in (7a). Then both expressions become identical except for the summation in (6a) and the integral in (6b). Here we address this particular aspect of classical-quantum correspondence, which is equivalent to the mathematical problem of the relation between the integral and the sum, converging to the integral as the grid size (
[image: image13.wmf]in our case) tends to 0. We find that Euler-Maclaurin formula, which gives an asymptotic expansion in power series in 
[image: image14.wmf], is not sufficient to assess the physics of the classical-quantum correspondence, except when the results are close. Instead, singular terms of the form 
[image: image15.wmf], not included in the asymptotic expansion, define the difference between classical and quantum results when this difference is significant. These terms are related to pole-type singularities of the elastic scattering S-matrix in the complex plane of angular momentum [11]. For the soft-photon limit not only the difference between quantum and classical results but each of them separately may be adequately described by the sum of contributions due to a few poles, which are the analytic continuation of the bound states supported by the potential.
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FIGURE 6. Ratio of classical result (6b) to quantum sum (6a), as described more precisely in [2]. Solid line – exact result, dashed curve – approximation based on three Regge poles, associated with five bound states in a model potential. 

As an example we consider soft photon bremsstrahlung for the case of electron scattering on Ar, using a short-range potential [13]. We have calculated numerically the trajectories and residues of the S-matrix poles (three are needed). In Fig. 6 we present a calculation [2] of the ratio of the classical result (6b) and the quantum result (6a), both using exact numerical results for the S-matrix and using the pole approximation. As can be seen from Fig. 6, the results are well reproduced, using just three Regge poles. The Euler-Maclaurin formula is applicable by 60 eV, where classical and quantum results are close.

V. CONCLUSIONS

We have discussed the origin of the structures in the differential cross section and in the asymmetry parameter in the classical bremsstrahlung process, using the soft-photon limit case. The features of scattering associated with classical trapping do not contribute to the structures.  In the classical case, as in the quantum case, we can understand oscillations with energy in terms of the small contribution of certain angular momenta at certain energies (in the quantum case these correspond to the energies at which some dominant radial matrix elements have zeros).

We have begun a study of the trajectories of zeroes in dipole free-free transitions.  For free-free transitions zeroes are observed in all atoms in the range Ne-Ar.  We can distinguish three general types of the trajectories: neutral, transitional and ionic. The first type occurs in neutral atoms, the second and third ones occur in ions.

We find that the problem of the quantum-classical correspondence for the soft-photon limit of the bremsstrahlung process may be characterized in terms of non-analyticity of the scattering S-matrix in the complex l-plane (Regge poles).
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