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Abstract. We report a new approach to describe the features of the bremsstrahlung process in electron-atom interaction. The method employs a modification of the Watson transform. We rewrite the partial wave sum in the form of a contour integral in the complex l-plane and we identify contributions due to particular singularities of the elastic scattering S-matrix considered as a function of complex angular momenta. The behavior of the trajectories of these poles, known as Regge poles, as a function of electron energy, exhibits common features for a broad class of potentials, making the representation useful for description of the general features of the bremsstrahlung cross section. We demonstrate that the extent of classical-quantum correspondence for free-free radiative transitions can be assessed using this representation.

I. INTRODUCTION

Since the pioneering work by Regge [1], complex angular momentum (CAM) representations of scattering phenomena in terms of contributions associated with singularities of the S-matrix in angular momentum have become a quite important tool for analysis of scattering processes. The efficiency of the method is due to the fact that some physical phenomena may be explained in terms of a few Regge poles. In non-relativistic quantum scattering  theory this approach is an important alternative to the Faxen-Holtsmark partial wave representation of the scattering amplitude. In recent years there has also been interest in applications of Regge theory to resonant scattering phenomena, both in atom-atom and in atom-molecule collisions [2]. Details of the technique and extensive references are available [3,4,5]. 

While in the heavy particle scattering (or scattering of electromagnetic waves on microparticles), the CAM method provides a mathematical tool to reduce large partial wave sums to a few terms, in electron-atom collisions the power of the method is revealed in analysis of analytic relations, such as quantum-classical correspondence [6]. We consider the partial wave expansion of the non-relativistic quantum amplitude of electron-atom bremsstrahlung. A modification of the Sommerfeld-Watson transform employing the digamma function (see below) is used to analyze the corresponding sum over partial angular momenta. For the soft-photon limit both the quantum and classical results and the quantum-classical difference are mostly due to the contribution of a few poles of the elastic scattering amplitude in the complex l-plane. At low energies both the bremsstahlung cross sections and the classical-quantum relation are mainly determined by low-energy parts of Regge trajectories, which from zero  energy enter the upper complex l-plane from the real l-axis.

II. SOFT-PHOTON LIMIT

In the soft-photon limit the bremsstrahlung process is determined by the asymptotic behavior of the electron radial wave functions [7], and the endpoint of the spectrum has the form
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Here (=1/137, 
[image: image2.wmf], and (l are the elastic scattering phases determining the elastic electron scattering amplitude
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Using the set of relations
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it is possible to rewrite the sum in equation (1) as 
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so that


[image: image6.wmf]               (5)

where c is the velocity of light, v the electron velocity and  d( the solid angle element. A remarkable fact is that both the quantum and classical soft-photon limit have the identical form (5). In the case of classical mechanics the elastic scattering cross section is defined as 
[image: image7.wmf], where 
[image: image8.wmf] is the impact parameter, and equation (5) may be written in a form emphasizing the similarity with the quantum formula (1):
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We may address the problem of classical-quantum correspondence in terms of the mathematical relation between the sum (1) and the integral, associated with equation (6),
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which one may try to relate through an Euler-Maclaurin expansion. It is important to note that there are pole contributions  (see Sect. IV) to both sum and integral (not included in an Euler-Maclaurin asymptotic expansion) which determine the relation between quantum and classical results beyond the region of their correspondence. 

III. S-MATRIX SINGULARITIES

As discussed in detail in [6,8], both classical and quantum calculations of the soft-photon limit of bremsstrahlung reveal similar oscillatory features in the energy dependence of the cross section. In the quantum case these structures are related to the zeroes in particular terms in the sum in (1) at particular energies, due to the behavior of dipole matrix elements as functions of electron energy [7]. A similar explanation was suggested for the classical calculations [8]. Here we make an attempt to find an alternative simple description of these features using the method of complex angular momenta.

First we rewrite (1) in terms of the elastic scattering S-matrix elements
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Considering S(l) as a function of complex l, its poles in l are located in the upper half plane, and the number of Regge poles associated with bound states in the potential is equal to the number of bound states for l=0. The same structure of singularities is also present in equation (8) (note that the S-matrix does not have zeroes in the first quadrant of complex l and in the fourth quadrant zeroes are conjugate to the poles in the first quadrant due to the unitarity relation S(l)S(l*)*=1). Fig. 1 and Fig. 2 show the shape of the S-matrix for the short-range potential 
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This potential was studied in connection with the applicability of the Regge series for the calculation of the differential cross section in e-Ar scattering [9]. Positions of poles (calculated numerically) in the complex l-plane as functions of electron energy are shown in Fig. 3. 
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FIGURE 1. The shape of the elastic scattering S-matrix in the complex l-plane for collision energy 55 eV. Three poles originate from the five bound states supported in the potential (9). 
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FIGURE 2. The same as Fig. 1 for collision energy 0.6 eV.  Compared to Fig. 1 the poles corresponding to the bound states are positioned closer to the real axis. The pole at the left (also in Fig. 1) originates at the point l(-0.5 and is not related to a physical bound state. Note that the upper pole is not present in Fig. 1).
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FIGURE 3. Trajectories of Regge poles for the short-range potential (13) for electron energies from 0.001 eV (near real axis) to 200 eV (in the plane above the real axis). 

IV. INTEGRAL REPRESENTATION
It is intuitively clear from Fig. 1-3 that the shape of the Regge trajectories may describe the features in the energy dependence of the sum (4) and the cross section (1). To develop a corresponding quantitative mathematical description we use a representation of the sum in a form of a contour integral, so that the Cauchy theorem may be used to single out contributions from different poles. Two representations are suggested in the literature:  the Poisson sum formula (references are given in [4])
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and the relation associated with the Sommerfeld-Watson transformation [10] 
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The contour in (11) passes around the poles z=0,1,… Both representations are useful if the number of partial waves contributing to the sum is large (so that the contribution of small ( in (10) is small and the so-called background integral in the Sommerfeld-Watson transform is negligible compared to the pole contributions). For the case of electron-atom collisions the applicability of (10) or (11) is limited. We suggest a modification of (11) using the digamma function 
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Here the contour C(N) is such that the points zm, m=0,1,..N are inside the contour, and the second term is a sum over the singularities of the function f(z) inside C(N) (for rapidly decreasing functions and a suitable choice of N the first term can be made small). We note that since the digamma function has an essential singularity at infinity the pole contributions have essential singularities at h=0. 

V. BREMSSTRAHLUNG CROSS SECTIONS

We present exact numerical calculation of the elastic scattering S-matrix and bremsstrahlung cross sections. We also examined the applicability of a simple analytical unitary representation of the S-matrix, 
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where the product is taken over three Regge poles. The representation (13) reproduces the phase-shifts quite well for small collision energies. Numerical result for the scattering phase shifts and approximation (13) are compared in Fig. 4. The exact and approximate results differ by an approximately constant value which cancels in the difference (l+1-(l entering equation (1), so that the bremsstrahlung cross sections are reproduced quite well. 
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FIGURE 4. l - dependence of the scattering phase shift for collision energy of 15.48 eV. Exact result (thick curve), approximation (13) (thin curve). Vertical grid lines are drawn to indicate real part values of Regge pole positions in the complex l plane (see Fig. 1-3).
In Fig. 5. the bremsstrahlung cross sections calculated using three Regge poles are compared with the exact quantum results and with the results obtained using classical mechanics. The position of quantum cross section minima is well reproduced by the three-pole approximation, and the classical result for the position agrees. In Fig. 5 we also show the results of quantum mechanics with a modified cross section (1) where the sum is replaced by the integral (7). The agreement between this and the classical result suggests that the main error of the classical approach is associated with taking integrals over the continuum classical angular variable, rather then a  discrete sum. 
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FIGURE 5. 
[image: image23.wmf] [equation (1)] as a function of electron energy. Exact quantum result (thick curve), classical result (thin line), approximation (13) in the quantum result (dashed line), modification of the quantum result with the substitution (7) in equation (1) and formula (13) (thin dashed line).
In Fig. 6 we compare exact quantum results, approximation (13), and classical results for the elastic scattering momentum transfer cross section which determines the bremsstrahlung spectrum end-point in equation (5) for a collision energy of 216 eV (at this energy the exact quantum results and the classical results are very close). The singularity of the elastic scattering classical cross sections is due to the rainbow effect, and it occurs at the angle for which the classical deflection angle has its maximum. For lower energies, the rainbow deflection angle (R(E) approaches 2(, the momentum transfer factor {1-cos[(R(E)]} has a minimum, which explains the shape of the classical cross section in Fig. 5 (note that as electron energy approaches the orbiting regime the classical deflection angle becomes infinite). From Fig. 6 we see that the rainbow angle is close to ( for this particular energy(216 eV), and this can explain why the bremsstrahlung cross section has a maximum at this energy (see Fig. 5). As is clear from the results in Fig. 5 the integral of exact quantum and classical cross sections in Fig. 6 over the deflection angle are very close, while the shape of the two cross sections are only similar (for lower energies the integrals are also different, as can be seen in Fig. 5).
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FIGURE 6. The elastic scattering momentum transfer cross section 
[image: image25.wmf] [see eq. (5)], as a function of scattering angle (, for collision energy 216 eV. Classical result (thin curve), exact result (thick curve), approximation (13) (dotted curve).

In Fig. 7 we use (12) to separate contributions from different Regge poles. It is clear that the features of the cross around 20 eV are due to the contribution of one particular Regge pole, which is located in the complex l-plane in the vicinity of l=1 at low energies (see Fig. 3).

[image: image26.png]500

400 -
300 -
200 -

100 -

5 10 20 50 100 200
Electron energy (eV)




FIGURE 7. Partial contribution of the Regge poles 1,2,3 of  Fig. 3. 
VI. CONCLUSIONS

 We have examined the use of complex angular momenta in the analysis of different aspects of the soft-photon limit of the bremsstahlung process. We found an adequate Regge-type representation of the soft-photon limit of bremsstrahlung (and of the elastic scattering cross section). The bremsstrahlung cross sections may be described using only the trajectories of the Regge poles in the complex l-plane.  Numerical calculations demonstrate that maxima and minima of the bremsstahlung cross section may be associated with contributions of particular Regge poles.

 In considering the problem of quantum-classical correspondence we are able to associate the difference between quantum and classical results with singularities of the elastic scattering S-matrix as a function of complex angular momenta (Regge poles). When the difference is significant an asymptotic series in powers of 
[image: image27.wmf] (such as the Euler-Maclaurin series) is not applicable, and terms having essential singularity  as 
[image: image28.wmf](0 dominate (pole contributions in (12)).
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