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Abstract

Using perturbative approach to IPA breaking effects we find analytical equations which
enable to obtain the high energy behavior beyond IPA. The IPA breaking contributions to
the cross sections are expressed as the IPA matrix elements of relatively simple operators.
The equations for the cross sections ratios are shown to be valid in a broad energy interval.
We obtain also the quantitative criteria, which enables to predict which of the couplings
are significant for the fixed values of the photon energy. We compare our perturbative
results to our numerical calculations. Account of IPA breaking effects is shown either to
eliminate or to diminish strongly the discrepancy between the experimental data and the
results of IPA calculations.

1 Introduction

The nonrelativistic high energy asymptotic behavior of photoionization cross section differs
from that, predicted by independent particle approximation (IPA) for the values of the orbital
momenta ` ≥ 2. At ` = 1 the energy dependence is not altered beyond IPA, but the value of the
coefficient changes (Drukarev et al 1999). In this paper we obtain the expressions describing
the high energy behavior of cross sections for single photoionization beyond the independent
particle approximation (IPA). We limit ourselves to nonrelativistic outgoing electron energies,
and thus to photon energies ω � m, with the electron mass m ≈ 511 keV. The relativistic
system of units with h̄ = c = 1 is used, and the electron mass is kept as m. We consider the
states, for which the spin-orbit interaction is small enough, and thus space and spin variables
can be separated.

The experiments of Dias et al (1997) and of Hansen et al (1999) for ionization of s and of p
states of neon and of argon by the photons with the energies of about 1 keV attracted attention
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to the high energy photoionization and stimulated the present analysis. The IPA cross-sections
have been well studied. The values of the cross sections were computed and tabulated in various
approximations for the wave functions of both initial and final states. In an IPA approach the
nonrelativistic high energy asymptotic behavior is known to be (see, e.g. Amusia (1990))

σI
n`(ω) =

an`

ω7/2+`

(
1 +O(ω−1/2)

)
, (1)

with n the principal quantum number of the electron which is photoionized. The coefficient
an` is independent of ω. The superscript I indicates the IPA value. The leading term of the
expansion in powers of ω−1 is called the asymptotics.

In the preliminary report (Drukarev et al 1999) we suggested the mechanism of how IPA
breaking interactions change the asymptotic behavior given by Eq.(1). The main idea is that
the factor ω−` comes because the photoionization takes place at the small distances of the order
p−1 with p being the momentum of the outgoing electron. Once the nonrelativistic bound state
wave function is proportional to r`, we obtain the factor p−` in the amplitude and the factor
ω−` in the cross-section. However the quenching can be avoided. The photon can interact
directly with s-electron, which can knockout the electron with orbital momentum ` by electron
impact. If the latter interaction takes place at the distances of the order of the size of the
subshell with quantum number `, there is no p−` quenching. However, since the time which the
ionized electron needs to pass the distance is proportional to p−1 , we obtain this small factor
in the amplitude. Thus, high energy behavior for ` ≥ 1 becomes

σn`(ω) =
An`

ω9/2

(
1 +O(ω−1/2)

)
(2)

with An` 6= an`. Hence, for ` ≥ 2 the functional dependence on ω is altered. For ` = 1 the
functional dependence is not changed, but the value of the coefficient is modified. For ` = 0
the IPA breaking effects provide the contributions beyond the asymptotics and

σn0(ω) =
An0

ω7/2

(
1 +O(ω−1/2)

)
(3)

with An0 = an0.

We noted also (Drukarev et al 1999) that for ` = 1 the contribution of IPA breaking effects
in the ground state provides a contribution with the same energy behavior. We gave the
expression for this term through the total set of eigen-functions of the spectrum.

The investigation was continued by publication of Amusia et al (2000) were the general
equations for the IPA breaking contribution have been obtained. It was shown that these
expressions just correspond to the lowest order random phase approximation with exchange
(RPAE) diagrams. Thus, the RPAE computations should reproduce the effect automatically.

In the paper of Avdonina et al (2002) the validity of nonrelativistic high energy description of
photoionization processes was investigated. The analysis was based on asymptotic perturbation
theory (APT) of Pratt and Tseng (1972), which enables to describe the photoionization in terms
of the hydrogenlike functions. The leading corrections to the asymptotic behavior, i.e. the terms
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O(ω−1/2) were found to depend on the specific parameter πξZ with

ξZ =
mαZ

p
, (4)

being Sommerfeld parameter of the interaction between the outgoing electron and the nucleus.
Here Z denotes the charge of the nucleus while α = 1/137 is the fine structure constant.
The leading corrections to the asymptotic behavior depend linearly on πξZ , i.e. they contain
the minimal power of the parameter ξZ multiplied by relatively large coefficient. Hence, the
photoionization cross-sections converge to the asymptotic limit very slowly. It was noticed by
Avdonina et al (2002) that however, at least for the lowest bound states, the terms which
depend on the parameter πξZ most rapidly compose a factor which was calculated explicitly.
This factor, which we called a Stobbe factor, is common for the bound states and thus cancels
in the ratios of the cross sections. There are still more cancellations for the cross section ratios
of the ionization of the states with the same principle quantum numbers. This explains the
much better convergence of the cross sections ratios, both in framework of IPA and beyond,
e.g.

Rn`(ω) =
σn0(ω)

σn`(ω)
. (5)

This was supported by the IPA Hartree-Fock and IPA breaking RPAE computations for several
specific cases, e.g. for those, for which the experimental data was provided by Dias et al (1997)
and by Hansen et al (1999).

In the present paper we obtain analytical expressions for the asymptotics of cross sections
of photoionization beyond the IPA in the lowest order of IPA breaking interaction. This was
done by using the perturbative approach to the final state (FSI) interactions of the outgoing
electrons, developed earlier for the FSI in the beta decay by Drukarev and Strikman (1986,
1987).

The calculations are based on the expansion in power series of Sommerfeld parameter of
interaction between the outgoing and the bound electrons

ξ = α/ve , (6)

(ve is the velocity of the outgoing electron in units of c). This parameter is assumed to be
small. The IPA breaking amplitude of a specific state is expressed linearly through the IPA
amplitudes of ionization of the s states. The cross sections are presented through IPA ionization
cross sections of the other states and the matrix elements of relatively simple operators, between
the single-particle functions.

It was shown that for ` ≥ 2 only the IPA breaking effects in the final state are important
in the asymptotics. However, for ` = 1 the IPA breaking effects in initial state can be as
important as in the final one. The IPA breaking effects in the initial state can be expressed
through a single parameter of the single-particle wave function, i.e. through the first derivative
at the origin which is the renormalization of the initial state by means of asymptotic Fourier
theory (AFT), as shown by Suric et al (2003). However, there is no strict argument for possi-
bility of calculation of this parameter in the lowest order of perturbative theory. Only in the
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hydrogenlike approximation, i.e. for internal electrons of the relatively heavy atoms we can
estimate parameter of the expansion as 1/Z, as well as IPA breaking effects in the final state.
Anyway, the importance of higher order IPA breaking terms in the ground state would mean,
that single-particle presentation is not a good approximation for the initial state.

Similar expressions were obtained beyond the asymptotics for the photon energies large
enough for the parameter ξ2 to be small. This means that the photon energy being expressed
in Rydbergs should be much larger that unity. In this case the IPA breaking amplitude of
ionization of any state is expressed through the linear combination of the IPA ionization ampli-
tudes of the other states of the spectrum. Also the ionization cross section is expressed through
the combination of IPA cross sections.

In the asymptotic limit one should include the coupling of s electrons only (but these
should be s electrons from all shells). However, in the applications we deal with specific
finite values of energies and beyond the asymptotics the couplings between all the states do
contribute. However, we can estimate some of them to be negligibly small if the split between
the corresponding levels is not small enough. We obtain a quantitative criteria, which enables
to predict which of the states contribute significantly to modify the IPA amplitude.

As an important special case we consider the atom with s and p electrons only. This is
important for the applications. The lowest contribution beyond the asymptotics should include
the influence of the states with higher ` on the cross section of ionization of s states. Such
terms may appear to be numerically important at finite energies. Also, for the higher states
they may appear to be the largest corrections to the asymptotics of the ratios Rn`, defined by
Eq.(5). For ` = 1 we have a very explicit picture. The high energy IPA asymptotics of Rn1(ω)
is Rn1(ω) = ano

an1
ω. Account of coupling of s states to the ionization of p states changes the

slope. Account of coupling of p states to the ionization of s states shifts the line Rn1(ω). The
signs of the two effects are shown to be correlated: if the slope diminishes, the line is shifted
down, and vice versa.

We show that the IPA and IPA breaking amplitudes, of ionization of all the bound states
calculated with the accuracy ξZτ/p with τ standing for the average momentum of the bound
state obtain the common factor, containing all the dependence on the parameter πξZ . We
provide also a prove that the Stobbe factor. can be singled out for ionization of any state
indeed. This supports the faster convergence of the cross section ratios defined by Eq.(5)
comparing with the cross section themselves.

We apply our results for the specific case of ionization of external electrons in Ne and Ar,
studied experimentally in by Dias et al (1997) and by Hansen et al (1999). Earlier Avdonina
et al(2002) found that starting from the photon energies of about 0.7 keV the cross section
ratios R21 in Ne, being calculated in the Hartree-Fock (HF) approximation indeed demonstrate
the asymptotic behavior, while the cross sections do not. We show also that the RPAE cal-
culations lead to similar behavior, with the split between RPAE and HF results being about
1/3–1/4 of the latter. Our perturbative method provides the close results, in agreement with
the experimental data.

For the case of Ar our earlier calculations (Avdonina et al 2002) show the asymptotic
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behavior of R21 calculated in RPAE in the same region. The HF results provide larger deviations
from the asymptotical law. The split between RPAE and HF results is, as in Ne case about
1/3–1/4 of the latter. The results of our present approach are again close to those of RPAE. The
HF calculations for Ar provide the results which overshoot the experimental data by a factor of
about two. The IPA breaking interactions in the final state explain only 60% of the discrepancy.
One of the possible reasons of the remaining discrepancy was mentioned by Amusia (2000). He
reminded that the calculations carried out by Amusia et al (1982) demonstrated 3s state of Ar
not to be well defined as a single-particle state. Thus, strong IPA breaking effects are present
in the initial state. This leaves a room for further investigation of the case.

We present the main qualitative results in Sec.II and obtain our asymptotic equations in
Sections III and IV. In SecV we present equations for account of all the couplings in the lowest
order beyond the asymptotics. In Sec. VI we calculate the common energy dependent factor.
In Sections VII and VIII we apply our results to investigation of ionization of external electrons
of Ne and Ar at the photon energies of the order of 1 keV. The results are summarized in
Sec.IX.

2 Main qualitative results

In the IPA framework the photoionization amplitude for the state with quantum numbers
n, `, `z is

φn`m = 〈ψp|γ|ψn``z〉 , (7)

with ψp and ψn``z the single-particle wave functions of the outgoing and the initial bound
electron. The operator γ describes the electron–photon interaction. We assume the velocity
form of electron-photon interaction operator. (We do not discuss the dependence of different
contributions on the form of γ in this paper).

We investigate the high energy limit of this amplitude, when

ω � In` (8)

with In` the binding energy of the ionized n` subshell. Eq.(8) means that the momentum of
the outgoing electron

p = [2m(ω − In`)]
1/2 � τn` . (9)

Note, that one can present ξ2 = (mα)2/p2 = I0/E ' I0/ω with E standing for the energy of
the outgoing electron, while I0 = mα2/2 = 13.6 eV. (This makes just one Rydberg.) For most
of atomic levels the binding energy is larger than that. Thus, condition (8) insures that

ξ2 � 1 ; E � I0 (10)

required for perturbative treatment of FSI to be valid. We shall assume Eq. (10) to be true
anyway.

Thus, Eq. (9) provides two scales for the momenta which are τnl and p. It is known that
asymptotics of the amplitude ϕn``z , presented by Eq.(7), is determined by behavior of the wave
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function ψn``z at small values r ∼ p−1 � τ−1
n` , i.e. at the distances, which are much smaller

than the size of the atomic shell with quantum number ”n”. Since ψn`m(r) ∼ r` at small `, we
find for the case, when τn` ' τn0 = τn

ϕ
(0)
n``z

∼ ϕ
(0)
n00

(
τn
p

)`

(11)

with upper index (0) denoting the asymptotics of the amplitudes. The value τn in nominator is
dictated by dimension. In the hydrogenlike approximation this can be obtained explicitly with
τn = mαZ/n.

However, there is an alternative mechanism. Instead of interacting with an n` state, the
photon can interact with a n′s state, creating a hole. Then the knocked-out electron pushes the
n` electron into the n′s hole by electron impact. This second step takes place at the distances of
the order of the size of Bohr orbits (rather than the small distances at which the photoabsorption
occurs), and thus we avoid suppression by powers of momentum. However interaction of the
outgoing electron with the bound electron is proportional to the Sommerfeld parameter, defined
by Eq. (6). Thus, asymptotics of the IPA breaking amplitude Φn` is Φ

(0)
n` ∼ ξϕn′0.

Hence, for ` ≥ 2 the asymptotics of the amplitude which is the sum of IPA and IPA breaking
terms is totally determined by IPA breaking effects. The parameter estimation gives

σ
(0)
n` (ω) ' ξ2σ

I(0)
n0 (ω) . (12)

For ` = 0 the IPA breaking terms contribute beyond the asymptotics only. For ` = 1
interference of IPA and IPA breaking effects contributes to the cross section as

σI
n1(ω)− σn1(ω)

σI
n1(ω)

' κ (13)

with

κ =
(
an0

an`

· I0
)1/2

, (14)

while the square of IPA breaking terms contribute κ2 terms. In the case ` = 1 there are IPA
breaking effects in the initial state interaction as well. This is the admixture of higher lying
states to the single-particle n` state by electron-electron interaction. Parameter κ introduced
above by Eq. (14) plays the role of Sommerfeld parameter of this interaction. Hence, such
terms do not contribute to asymptotics in the case ` ≥ 2. However, for ` = 1 they provide
parametrically the same contribution as the FSI IPA breaking terms. One can see, that for the
internal electrons of a heavy atom κ ∼ Z−1, and thus perturbative approach to IPA breaking
in the initial state is approved. However, in the general case the higher order terms may appear
to be important.

Now we come to quantitative description.
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3 Main equations

To obtain the mathematical description of the IPA breaking mechanism, consider the two-
electron states |i, j〉 with i denoting the set of quantum numbers n``z. In IPA the amplitude
(7) is

ϕn``z = 〈p, j|γ|i, j〉 (15)

with p denoting state of the outgoing electron. In IPA the ”j” electron is just a spectator.

Consider now admixture of other two-electron states by ee interaction V in the final state

Φi = ϕi +
∑
k,j

〈p, j|V |k, j〉〈k, j|γ|i, j〉
εi + ω − εk

−

−
∑
k,j

〈p, j|V |k, i〉〈k, i|γ|j, i〉
εj + ω − εk

(16)

with ”k” standing for the vacancies in both continuum and discrete spectra. In the second term
of Eq.(16) the photon still interacts directly with the bound electron ”i”, while the third term
describes the IPA breaking mechanism.

In the nonrelativistic approximation the interaction V does not depend on the spin variables.
Thus, the spin projection in the states |j〉 and |i〉 should be the same. Hence, the space part
of the wave function describing this two-electron state should be asymmetric.

The main contribution to the sum over ”k” in the third term of Eq.(16) comes from con-
tinuum states with momentum k̄ close to p̄, i.e.

k̄ = p̄+ f̄ (17)

with |f | being of the order τi (see assume for simplicity, that τi ≈ τj). To prove the statement,
present

〈p, j|V |k, i〉 = 〈j|u|i〉 (18)

with

u(r) =
∫
ψ∗p(r1)v(r1 − r)ψk(r1)d

3r1 (19)

〈j|u|i〉 =
∫
ψ∗j (r)u(r)ψi(r)d

3r , (20)

while v stands for ee interaction. The main oscillating terms in Eq.(19) are e−i(pr1) and ei(kr1)

coming from the continuum wave functions ψ∗p and ψk and the integral in Eq.(20) drops quickly
if |p − k| � τi. Thus, we can replace 〈k, i|γ|j, i〉 by 〈p, i|γ|j, i〉 = φj in the last term of rhs of
Eq (16) ( this leads to the error of the order p−4). Thus, we can write for the amplitude which
accounts IPA breaking effects through the lowest order of the final state interactions

Φi = φi − Λi,jφj (21)

with

Λi,j =
∫ d3f

(2π)3

〈p, j|V |p+ f, i〉
ω + εj − εp+f

. (22)
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Here we replaced integration over k by that over f . The matrix element in the rhs thus
describes the transition between the two two-electron state. One of them consists of the bound
electron in the state i and the continuum electron with momentum p̄ + f̄ . The second one
consists of the bound electron in the state j and the continuum electron with momentum p̄. All
the electrons are moving in a certain effective field. Following previous discussion, we include
the states |j〉 with zero value of angular momentum only.

Equation (21) expresses the IPA breaking amplitude through the IPA amplitudes in the
lowest order of the final state e− e interactions.

Now we shall see, how the asymptotics of the amplitudes ( denoted by the upper index
”(0)” ) are related. This means, that we must calculate the leading term of the expansion of Λ
in powers of p−1.

The leading term of the expansion in powers of p−1 comes from replacing of the continuum
states in the matrix element in Eq.(18) by the plane waves. The interactions with the field of
the residual ion takes place at the distances of the order of the size of the atom, providing the
corrections of the order ξZτi(j)/p (Drukarev and Strikman, 1986). Thus

Λ
(0)
i,j = 〈i|B|j〉 (23)

with

B(r̄) = −
∫ d3f

(2π)3

2m

f 2 + 2(p̄f̄) + 2mδ
v(f)ei(fr) . (24)

Here δ is the difference of binding energies, i.e. δ = In′0− In`, and v(f) is the Fourier transform
of the interaction between two atomic electrons. Taking the direction of outgoing electron
momentum as the axis of quantization of angular momentum, we find that the second term on
the r.h.s. of Eq. (21) vanishes except for `z = 0. Hence,

Λn``z ,n′00 = δ`z0Λn`,n′0 . (25)

(Here and below we omit the upper index for Λ, having in mind that Λ is described by Eq
(23)). Thus, only the amplitudes of ionization of the states with `z = 0 obtain IPA breaking
admixture of the second term of Eq.(21).

As we discussed above, Λ contains the factor ξ. Recalling estimation of Eq.(12) we find that
asymptotics of the cross section σn` is determined by the second term of Eq.(21) for all ` ≥ 2:

σ
(0)
n` (ω) =

∑
n′
|Λn`,n′0(ω)|2 σI(0)

n′0 (ω) . (26)

The situation for ` = 1 is more complicated, since, following previous discussion, we find
both terms in r.h.s. to be of the same order. There is also a contribution of the IPA breaking
effects in the ground state interaction. The IPA breaking interactions between the atomic
electrons can provide admixture of the states j with the same angular momentum ` = 1 to
the ionized state. Such amplitude will have the same energy dependence as the IPA one,
contributing to the asymptotics only in the case ` = 1. Following AFT (Suric et al 2003) the
high energy limit of amplitude of ionization of ` = 1 state can be expressed through a single
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parameter which is the derivative of the wave function of this state at the origin. Hence, the IPA
breaking effect in initial state can be treated as certain renormalization of the single-particle
wave function.

Thus, for ` = 1 it is more convenient to present the results for the square of the amplitude
Φ

(0)
n1 , since we must take care about the interference and watch the i factors. We find for the

state n10

|Φ(0)
n1 |2 = |ϕ(0)

n1 |2 + 2Re
∑
n′
ϕ

(0)
n1 Λn1,n′0ϕ

(0)
n′0 +

∑
n′
|Λn1n′0|2|ϕ(0)

n′0|2 + 2Re
∑
j

ϕ
(0)
j Gj (27)

with the last term in rhs describing the IPA breaking effects in the initial state,

Gj =
∑
r

〈j, r|V |r, i〉
εi − εj

and the sum is taken over all the atomic electron states r and over all possible admixed (both

discrete and continuum) states j. If the latter belongs to continuum, ϕ
(0)
j is the amplitude of

the absorption of the photon by the electron moving in the field of the atom.

The higher order FSI terms provide contributions beyond the asymptotics of the cross-
sections σnl.

4 Lowest order IPA breaking contribution

In this approximation we can assume the interaction between the atomic and ionized electrons
not to be altered by the other bound electrons. Hence, we put

v(f) =
4πα

f 2
. (28)

This enables us to obtain

B(r̄) = iξ(ln r(1− t) + c) +O(ξ2) (29)

with B(r̄) given by Eq.(24). Here t = (p̄r̄)/pr, c is a constant. This enables us to find for the
function Λi,j, determined by Eq.(22)

Λn`,n′0 = −iξ(Sn`,n′0 +O(ξ2)) (30)

with the contributions O(ξ) containing real terms, and

Sn`,n′0 = 〈ψn`0| ln(1− t)|ψn′00〉 . (31)

The wave functions ψn`0 and ψn′00 describe the electron states in the atom and in the ion
with the hole in (n`0) state. The terms, containing the constant c and ln r vanish due to
orthogonality of the angular parts of the wave functions. Note, that Eq.(31) can be obtained
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also by using the general approach to the final state interactions, developed by Drukarev and
Strikman (1986, 1987).

The matrix element in the rhs of Eq. (31) can be presented as the product of the angular
and radial matrix elements

Sn`,n′0 = b`dn`,n′0 . (32)

Here

b` =
(2`+ 1)1/2

2

1∫
−1

dtP`(t) · ln(1− t) (33)

is the angular matrix element with P` standing for Legendre polynomial, while the radial matrix
element is

dn`,n′0 = 〈ψ(r)
n` |ψ

(r)
n′0〉 . (34)

In Eq.(34) index (r) denotes the radial part of the wave functions. Recall, that the radial
parts of the wave functions, describing the states with the different angular momenta are not
orthogonal even for the same Hamiltonian.

Note that the function Λ expressed by Eq. (22) is imaginary in the leading order of expansion
in powers of ξ. This reflects the two-step character of the process. After interaction with the
photon, the quasi-real electron is created, which passes the distances of the order of the size
of the atom before interacting with the electron with orbital momentum `. The amplitudes
ϕn`0 have the form of real magnitudes, multiplied by the factor i`. Hence, for odd ` there
is interference between IPA and IPA breaking terms, while for even ` they result in additive
terms.

For the asymptotics at ` ≥ 2 we obtain

σ
(0)
n` (ω) = ξ2b2`

∑
n′
d2

n`,n′0σ
I(0)
n′0 (ω) (35)

and the coefficient An`, introduced in Eq(2) is

An` = I0b
2
`

∑
n′
d2

n`,n′0

an0

an′o
, (36)

The ratios, defined by Eq(5) are

R
(0)
n` (ω) =

I0
ω
b2` ·

∑
n′
d2

n`,n′0

an0

an′o
(37)

For ` = 1 the asymptotics is

σ
(0)
n1 (ω) = σ

I(0)
n1 (ω) + 2ξb1

∑
n′
dn1,n′0

(
σ

I(0)
n1 (ω)σ

I(0)
n′0 (ω)

N0

N1

) 1
2

+

+ ξ2b21
∑
n′
d2

n1,n′0σ
I(0)
n′0 (ω) + 2Re

∑
k

Gk

(
σ

I(0)
n1 (ω)σ

I(0)
k (ω)

) 1
2 . (38)
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Here the last term stands for the interference between IPA contribution to the amplitude and
IPA breaking terms in the ground state. The sum over ”k” includes both discrete and continuum
states. In the latter case σk stands for the cross section of the photon absorption by the electron
moving in the atomic field.

The leading correction to Eqs. (35) and (38) coming from higher order of FSI is the inter-
ference of the second order FSI amplitude with the IPA amplitude. It contributes beyond the
asymptotics containing the factor ξ2(τ/p)`.

The coefficients An1, introduced in Eq.(2) are

An1 = an1 + b1
∑
n′
dn`,n′0

(
I0
an1an′0N0

N1

)1/2

+ I0b
2
1

∑
n′
d2

n1,n′0an′0 + 2Re
∑
k

Gk(an1ak)
1/2. (39)

For the asymptotics of the ratio R
(0)
n` , defined by Eq(5) we find for ` = 1

R
(0)
n1 (ω) = rn · ω . (40)

The IPA breaking effects thus change the IPA value rI
n = an0/an1 to

rn = rI
n/K (41)

with

K = 1 + b2`
∑
n′
dn`,n′0

(
I0an′0N0

an1N1

)1/2

+ I0b
2
1

∑
n′
d2

n1,n′0

an′0

an1

+ 2Re
∑
k

Gk

(
ak

an1

)1/2

. (42)

5 IPA breaking contributions beyond the asymptotics

The IPA breaking correlations in the final state can be treated perturbatively for all energies
which satisfy the condition expressed by Eq. (10). It is not necessary for the cross sections or
for their ratios follow the asymptotic behavior. Beyond the asymptotics we must include IPA
breaking admixture of the states with all the orbital momenta (not only the s states, as it was
in the asymptotics) to the ionized states.

Assume the ionized state i to have the angular momentum ` while the admixed states j have
the orbital momentum `′. Now let us see, how the states with different `′ contribute. Note,
that the photoionization amplitude for the state with orbital momentum ` is proportional to
the factor i`. We use also the fact that the lowest order mixing matrix Λi,j is mostly imaginary,
with the imaginary part being proportional to ξ and the real part being proportional to ξ2

(Drukarev and Strikman 1986, 1987). Also the mixing matrix Θi,j which describes the final
state interactions of the second order is proportional to ξ2 with dominative real part. Thus,
IPA breaking effects caused by mixing of the states with odd values of `− `′ are proportional to
ξ, being determined by interference of IPA and lowest order IPA breaking terms. The terms of
the order ξ2 are determined by the square of the imaginary part of Λ in this case. For the even
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values of `− `′ the effect is determined by interference of IPA amplitude with the real parts of
Θ and Λ and by the square of the real part of Λ, being proportional to ξ2.

In the general case we must include the final state IPA breaking interaction up to the second
order. Following Drukarev and Strikman (1986, 1987) we present a general equation for the
amplitude of ionization of a the state i with quantum numbers n, `, `z with the couplings to
the states j with quantum numbers n′, `′, `′z = `z there is no coupling if the values of `z differ)

Φi = φi − Λi,jφj −Θi,jφj . (43)

Here Λi,j and Θi,j describe the final state interactions in the first and second order of expansion
in ξ. Using the approximations which have been used for the derivation of Eq.(29) we obtain

Λi,j = −iξSi,j + ξ2Ti,j (44)

with
Si,j = 〈i| ln r(1− t)|j〉, (45)

corresponding to Eq.(31), while

Ti,j =
r0
2
〈i|∂/∂r|j〉 (46)

is the real part of Λi,j.

The second order amplitude in the same approximation is

Θi,j = ξ2Qi,j (47)

with

Qi,j = −1

2
〈i| ln2 r(1− t)|j〉 . (48)

The terms, containing ln r survive only if the states i and j have equal angular momenta.
Otherwise, only ln(1 − t) term of the sum ln r + ln(1 − t) contributes due to orthogonality of
the angular wave functions. Also, the terms, containing the real part of Λ vanish if the two
angular momenta differ.

Of course, one can not discriminate the terms of the order ξ2 against those of the order ξ
without additional information about the amplitudes involved. We saw earlier, what happens
in the asymptotics. Here we present the formula for the cross-section accounting for the IPA
breaking terms of the order ξ2 in the final state and lowest order perturbative contribution of
IPA breaking interactions in the initial state.

σi(ω) = σI
i (ω) + 2ξ

∑
j

Si,j

(
σI

i (ω)σI
j (ω)

Nj

Ni

) 1
2

+ ξ2
∑
j

S2
ijσ

I
j (ω) +

+ 2ξ2
∑
k

(Tik +Qik)
(
σI

i (ω)σI
k(ω)

Nk

Ni

) 1
2

+ 2Re
∑
p

Gp

(
σI

i (ω)σI
p(ω)

) 1
2 . (49)

Here we labelled the states for which `− `′ is odd by j, and those for which it is even by k. In
the last term, presenting the IPA breaking effects in initial state p denotes the states with the
same orbital momentum as in the state i.
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While considering the high energy limit one should include the s-electrons only, but from
all the shells. Some of the contributions may appear to be small due to the small values of
the mixing matrix elements dn`,n′o. However, for the finite energies there is also a criterion,
connected with the photon energy. Beyond the asymptotics it should be tried for the states
with other orbital momenta as well. One can see Eq. (32) for Si,j to be true only if the energy
difference δ = Ii − Ij is small enough

m|δ| ≤ p · τ ; τ = min{τi , τj} . (50)

Otherwise the value of Λ is much smaller. Indeed, the denominator of the integrand of the
integral in the rhs of Eq. (24) is approximately 2mδ and one must go to higher order terms
of expansion in powers of small parameter (pf)/mδ ' pτ/mδ to obtain the contribution, that
would lead to finite value of the matrix element, presented by Eq.(23). Say, for j being an

s-state, we must go up to 1
δ
( (pf)

mδ
)` terms. Additional selection will be provided by the values of

the mixing matrix elements Si,j, Ti,k and Qi,k.

Consider as an example the case of mutual influence of s and p electrons of the same subshell.
It is important for the nowadays applications. The influence of s electrons on the ionization of
p ones is expressed by Eq.(38) with the upper indexes ”(0)” being removed:

σI
n1(ω) = σI

n1(ω) + 2ξb1
∑
n′
dn1,n′0

(
σI

n1(ω)σI
n′0(ω)

N0

N1

) 1
2

+

+ ξ2b21
∑
n′
d2

n1,n′0σ
I
n′0(ω) + 2Re

∑
k

Gk

(
σI

n1(ω)σI
k(ω)

) 1
2 . (51)

For the influence of p states on the cross-section of ionization of s states we obtain

σn0(ω) = σI
n0(ω)− 2ξb1

∑
n′
dn0,n′1

(
σI

n0(ω)σI
n′1(ω)

N0

N1

) 1
2

+ ξ2b21
∑
n′
d2

n0,n′1σ
I
n′1(ω). (52)

The minus sign of the second term is determined by interplay of i factors of the amplitude of
ionization of p state and of the function Λi,j. We find an explicit picture for the case when the
IPA ratio RI

n1 is determined by the asymptotic expansion — see Eq. (40), thus changing to

Rn1(ω) = rI
n · ω/K + cn + gn/ω (53)

with K being defined by Eq. (41), while,

cn = −2b1
∑
n′
dn0,n′1

(
I0
an0N0

an′1N1

)1/2

, (54)

and
gn = I0b

2
1

∑
n′
d2

n0,n′1σ
I(0)
n′1 /σ

I(0)
n1 . (55)

All the terms in the rhs of Eq.(38) change the value of K. The largest change is caused
by the second term which is proportional to the first power of small parameter ξ. The rhs of
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Eq. (51) is also dominated by the second term which provides the finite value of cn. The third
term of rhs of (51) provides a small nonlinear contribution expressed by the last term rhs of
Eq. (53).

Hence, the IPA breaking effects manifested themselves mostly in finite values of K − 1 and
of cn. The first effect is thus the change of the slope of the line RI

n1 = rI
nω. The second one

is the shift of the line up or down. Note, that the signs of the effects are correlated. The
decrease of the slope takes place together with the shift down, while the increase of the slope
is accompanied by the shift up.

If the electrons from the same shell are included only, i.e. only the terms with n = n′

contribute to the sums in the second terms of rhs of Eqs (38) and (51) we find an interesting

feature. If the IPA ratio R
(0)
n1 > 1, the relative influence of s electrons on the cross section of

ionization of p electrons appears to be larger than the influence of p electrons on ionization of
s electrons. If R

(0)
n1 < 1 we face the opposite situation.

6 Common energy-dependent factor beyond the IPA

Being treated in a straightforward way, i.e. as the lowest terms of p−1 expansion, the nonrel-
ativistic asymptotic cross sections are rather of purely theoretical interest: the asymptotical
regime is not reached in the nonrelativistic domain. However, one can separate two sources of
the p−1 contributions and single-out those, which contain the parameter πξZ .

Here we analyze the leading corrections to IPA and IPA breaking cross sections beyond the
asymptotics, i.e. the terms, containing extra powers of p−1 in the amplitude. The asymptotics
is provided by the lowest order terms of interaction of the outgoing electron with nucleus. In
the case of ionization of s-electron this is a plane wave, for ` ≥ 1 the next term should be
included.

Consider now next to leading terms of interaction of the outgoing electron with the residual
ion. Start with the interaction between the electron and the nucleus, calculating the correction
perturbatively. One can see, that the correction is caused by the small distances of the order
p−1, i.e. the same scale of distances, as the main process. Thus, the outgoing electron exchanges
momentum of the order of p with the nucleus. The bound state wave function enters through the
same normalization parameter as in the asymptotics. The direct calculation of the perturbative
correction shows, that the correction manifests itself by the factor (1− πξZ). Thus, the lowest
powers of p−1 appear with the large numerical coefficient. Interaction of the outgoing electron
with the residual ion includes the interaction with its electrons as well. In framework of IPA
it can be included by a screening potential. This was done in analytical perturbation theory
(APT) developed by Pratt and Tseng (1972). The interaction of the outgoing electrons with
the electronic shell of the ion takes place at the distances of the order of the size of the shell,
i.e. much larger than p−1. In such interaction momentum q transferred to the nucleus is of the
order of that of the bound electron τ . It is exchanged between the outgoing electron and the
atomic shell. This interaction provides the higher order correction, found in framework of APT
to be of the order ξξZ/Z

1/3 (Pratt and Tseng 1972, Oh et al 1976).
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Thus, the terms of the order πξZ come from the interaction of the outgoing electron with
the nucleus and do not come from the interactions with the atomic shell, irregardless of the
approximation, used for the description of the outgoing electron.

Due to APT we can study the photoionization in terms of the hydrogenlike wave functions.
Analytical formula have been obtained for the cross sections of photoionization of the lowest
levels of the hydrogenlike atoms. Stobbe (1930) derived the equations for K and L-shells and
Harriman (1956) — for M and N shells. Basing on these results we found (Avdonina et al
2002) that the most rapidly energy dependent terms compose the Stobbe factor

S(πξZ) = exp(−πξZ) , (56)

which does not depend on the quantum numbers of the ionized state. However, the values of
ξZ at fixed value of the photon energy do. With p−2 accuracy we must neglect the terms In` in
expression (9), replacing ξZ by

ξ̂Z =
mαZ

(2mω)1/2
, (57)

and the values of S(π̂ξZ) do not depend on the quantum numbers of the ionized state. The
total factor which has the common functional dependence for the considered states was the
”generalized Stobbe factor”

Sn(πξZ) =
2πξZ

eπξZ − e−πξZ
S(πξZ) exp

(
4πξZ arctan ξZ

n

)
(58)

with n standing for the principle quantum number of the ionized state.

Now we show that the common factor is indeed described by Eq.(52) for any ionized state.
Following Gorshkov et al. (1964) the amplitude of photoionization from the state n``z can be
presented as

ϕn``z = (4πα)
1
2Nn``zN(πξZ)Γn``z(ē∇̄k)X(k̄, p̄, τn`, ξZ) (59)

with Nn`m being a constant factor, depending on the quantum numbers of the bound states,

N(πξZ) =

[
2πξZ

1− exp(−2πξZ)

]1/2

(60)

is the normalization factor of the Coulomb wave function of the outgoing electron, i.e. it is the
value of the nonrelativistic Coulomb function at the origin. Operator Γn``z contains derivative
over τn` and (for ` 6= 0) gradients over photon momentum k. The function

X(k̄, p̄, τn`, ξZ) =
1

(p̄− k̄)2 + τ 2
n`

{
(p− k)2 + τ 2

n`

k2 − (p+ iτn`)2

}iξZ

(61)

has the same form for any bound state. After all the derivatives are calculated, one should put
k = 0, neglecting the terms of the order k/p ∼ (ω/m)1/2. Thus, the amplitudes contain the
common factor

Qn = N(πξZ) exp(−πξZ)exp(2ξZ arctan ξZ/n) . (62)
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Here we used that in the hydrogenlike approximation τn` = ξZ/n Note that the factor (−1)iξZ =
e−πξZ emerged just because in the photoionization p� k. This stresses the ”model-independent”
nature of this term.

Hence, the cross sections calculated in hydrogenlike approximation, contain the common
factor Q2

n. Comparing this formula to Eq. (52) we find immediately Q2
n = Sn for all the bound

states. Thus, equations (56) and (58) for the Stobbe factors are valid for all the bound states
indeed.

Note that the Stobbe factor S(πξZ) contains the most sharp dependence on the parameter
πξZ but does not pick all the terms which contain πξZ . Treating πξZ as the separate parameter
we find that all the dependence is reproduced by the factor

D(πξZ) = H2(πξZ) , (63)

while
H(πξZ) = N(πξZ) exp(−πξZ) (64)

contains all such dependence in the amplitudes.

Thus, for IPA amplitudes we find

ϕn``z = H(πξZ)ϕ
(0)
n``z

(1 +O(p−2)) , (65)

while the amplitudes ϕ
(0)
n``z

describe photoionization with the terms of the order p−1 being
neglected.

Now the IPA cross sections take the form

σI
n`(ω) =

an`D(πξZ)

ω7/2+`

(
1 +O(ω−1)

)
. (66)

Note that in contrast to Eq.(1) the next to leading terms are of the order O(ω−1) but not
O(ω−1/2). In the hydrogenlike equations they are of the order ξZτ/p

We turn now to IPA breaking contributions, provided by the second term of the amplitude
Eq.(21). As we saw earlier, the IPA amplitude φj, which contributes to amplitude of ionization
of the state i, is determined by small distances of the order p−1 , and thus obtain the factor
H(πξ̂Z). The matrix element Λ(0) describes the interactions on the distances of the order of the
size of the atomic shell, and thus next to leading order corrections to Λ(0) are of the order p−2.

Hence, for the amplitudes beyond IPA we have also

Φn``z = H(πξZ)Φ
(0)
n``z

(1 +O(p−2)) , (67)

while the amplitudes Φ
(0)
n``z

describe photoionization with the terms of the order p−1 being
neglected. Note, that for the analysis, and computations carried out by Avdonina et al (2002),
as well as by Suric et al (2003) it was convenient to single out Stobbe factor depending on πξZ ,
which does not contain all the dependence on this parameter.
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And thus for the cross sections beyond the IPA for ` ≥ 1

σn`(ω) =
An`D(πξ̂Z)

ω9/2

(
1 +O(ω−1)

)
(68)

and for ` = 0

σn0(ω) =
An0D(πξ̂Z)

ω7/2

(
1 +O(ω−1)

)
(69)

with D(πξZ) defined by Eq.(53). As well as in the IPA equation (66), the next to leading terms
are of the order O(ω−1) but not O(ω−1/2). In the hydrogen-like equations they are of the order
ξZτ/p. Due to the common factor D(πξ̂Z) Eqs.(37), (40)–(42) for the cross section ratios are
true in much broader region of energies than Eqs.(35) and (38) for the cross sections. With
the accuracy ξZτ/p the parameter ξZ which values depend on the binding energy of the ionized
state can be replaced by ξ̂Z , defined by Eq.(57), with the values common for all the bound
states.

7 Ionization of L shell of neon

Let us see now, how this technique works for the description of ionization of L-shell of neon by
the photon with the energy of 0.7–1 keV. This case is well studied experimentally by Dias et al
(1997).

Here we analyze the case by using Hartree-Fock (HF) interaction as IPA approximation and
by employing the equations describing the IPA breaking effects, obtained in the present paper.
We use the results of our HF calculations and apply the general Eq.(53) for calculation of IPA
breaking effects.

The analysis, carried out in the present paper enables to figure out the IPA breaking contri-
butions to the ratio R21(ω). Consider for example the point ω = 0.977 keV with the HF value
of the ratio RI

21 = 2.16.

Since the condition expressed by Eq.(50) is not true for 1s electrons, they can be excluded
immediately. We must include the couplings between 2s and 2p states only. The straightforward
calculation provides b1 = −

√
3/2. The HF value of the matrix element is d21,20 = −0.95

The terms, proportional to ξ in Eqs.(31) and (52) add −0.306 from the influence of 2s
electrons on 2p electrons and −0.141 from the influence of 2p electrons on 2s electrons. The
ξ2 terms contribute −0.034. Summing these values the total shift caused by FSI IPA breaking
effects is provided to be −0.481. Thus, the perturbative account of FSI IPA breaking effects
leads to the value R

(0)
21 = 1.68. The RPAE value is 1.82. With the realistic view on the accuracy

we can say that the HF and RPAE values of the ratio are 2.2 and 1.8, while the perturbative
approach provides the value 1.7. Calculations of the IPA breaking effects by the technique
developed in this paper with HF IPA wave functions provide the results shown in Fig. 1. One
can see the results to be close to those obtained in framework of RPAE. The splits between
IPA and IPA breaking results obtained by the two methods differ by about 25%, reproducing
the experimental data.
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The calculated ratio R21(ω) satisfies the asymptotic formula expressed by Eq.(40) with the
accuracy of 10% for the photon energies between 0.7 and 1.0 keV. Thus, for illustrative purpose
we can also use the asymptotical analysis. The ratio R21(ω) is described by Eq.(40) with
rI
2 = 2.19 keV−1.

The contribution of 2s state on ionization of 2p state can be expressed by the parameter K
defined by Eq. (41). Using Eq. (51) we find

K = 1 +
2
√

3

3
b1d2120

(
rI
2 · I0

)1/2
+ (b1 · d21,20)

2rI
2 · I0 + δK . (70)

The four terms in the rhs correspond to the four terms in rhs of Eq.(42). Recall, that I0 =
mα2/2 = 13.6 eV. We find the numerical values 0.17 and 0.02 for the second and the third
terms in rhs of Eq.(70). The last term presenting contribution of IPA breaking in initial state
can be written, following Eq.(42) as

δK = 2

√
3

2

∑
k

Re Gk

(
dk1

d21

)1/2

=
∑
k

pk +

∞∫
0

f(ε)dε (71)

with pk standing for contribution of discrete spectrum states (recall that only states with ` = 1
contribute). At k � 1 the excited states wave functions are hydrogenlike and one expects
pk = C/k3. Our calculations show that such behavior becomes true, indeed at k ≥ 6 with the
accuracy of about 10%. This enables to obtain f(0) = C/2. One can estimate contribution of
continuum, assuming that f(ε) varies slowly at the energies of the order Ip ≈ 20 eV, dropping
fast at larger values. This provides the values 1.3 · 10−2 and 4 · 10−3 for the two terms in r.h.s.
of Eq.(71).

Hence, the IPA breaking effects in the initial state contribute about 10% to the total differ-
ence K− 1. One could not predict this a priori since Eq.(14) gives κ = 0.16, and thus FSI and
initial state IPA breaking effects could be expected to be of the same order. The much smaller
magnitude can be understood as due to small value of ionization amplitude from the excited
states.

Thus we come to the value K = 1.17, the difference K − 1 is determined mostly by IPA
breaking in FSI.

While the influence of 2s channel on 2p changes the slope of the line, determined by Eq.
(40), the influence of 2p channel on 2s channel shifts the line by the value of c2 = −0.16 —
see Eq.(53). Since the accuracy of the asymptotical analysis is about 10% in this case, we can
neglect a small nonlinear contribution expressed by the last term of the rhs of Eq. (53). Thus,
with the account of IPA breaking effects the cross section is described by Eq. (53) with

a = 1.87 keV−1; c2 = −0.16 ; g2 = 0 . (72)

8 Ionization of M shell of argon

Now we analyze ionization of M shell of argon in the same way, i.e. we calculate the ratio of
ionization cross sections of 3s and 3p states the region of the photon energies 0.7–1.0 keV. The
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experimental data is provided by Hansen et al (1999).

First we find out which of the couplings are important. Condition (50) excludes the influence
of 1s electrons. Thus, we must investigate the couplings between M -shell electrons and the
influence of L-shell.

The contributions, proportional to ξ come from sp couplings. The couplings between M
electrons most important due to the large matrix element d31,30 = −0.97. The couplings between
2p and 3s and between 2s and 3p electrons are much smaller due to the small values of the
matrix elements d20,31 = 0.037 and d21,30 = 0.0032. Thus, although the ionization cross sections
of L electrons are about 10 times larger than the cross sections of M electrons, the couplings
of M -shell electrons to the L-shell electrons yields only a small correction to the effects inside
M -shell. However, this correction can be included. The other couplings provide much smaller
values.

The correlations between the electrons with the same angular momenta contribute to the
terms of the order ξ2. They change the ratio R31 by about 0.2% and thus can be neglected.

Consider as an example the IPA breaking effects at ω = 1 keV. The HF value of the cross-
sections ratio RI

31 = 0.78 (Avdonina et al 2002) modified mostly by 3s3p coupling. The changes
in the values of IPA cross sections of ionization of 3s and 3p states contribute −0.090 and−0.077
to the modification of the value of the ratio. As we noted at the end of Sec. V, the influence
of p electrons on ionization of s electrons is stronger than the opposite one since RI

31 < 1. The
perturbative account of IPA breaking effects yields thus RI

31 = 0.61, while the RPAE value
is 0.58. Account of IPA breaking effects by pertrubative approach and in framework of IPA
provides very close results — see Fig. 2.

One can see from Fig.2 that the HF results are about twice larger than the experimental
ones. The account of IPA breaking effects diminishes the discrepancy between the theoretical
and experimental results, making it about 3 times smaller, but does not eliminate it. As it
was recently mentioned by Amusia (2000), the IPA breaking effects in the ground state may
provide large contribution, quenching the ratio. Hence, there is hope, that account of both FSI
and initial state IPA breaking effects will describe the data.

Our HF calculations show that this is not the asymptotical region for the cross-section ratio,
i.e. the function R31(ω)/ω depends on ω. On the other hand, the RPAE results are much more
alike to be the asymptotical ones. To understand this, note that deviations of HF results from
the asymptotics are not large. The HF results can be approximated by inclusion of the lowest
term beyond the asymptotics, i.e.

RI
31(ω) = aω + b (73)

with a = 0.65 keV−1, b = 0.13. As we saw in the end of Sec. V, the value of b is modified by
the influence of ionization of 3s states by 3p states. Using Eq. (52) we find that the value of b
changes to b′ = b+ δb with δb = −0.12. Thus the IPA breaking effects diminish the value of b
to large extent.
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9 Summary

In this paper we presented our investigation of photoionization beyond IPA, started by a short
report (Drukarev et al 1999), where we found, that the asymptotic behavior of the IPA cross
sections is determined by Eq. (2) instead of IPA behavior given by Eq. (1). Thus, for ` ≥ 2
the form of the energy dependence changes. For ` = 1 the form of the energy dependence does
not change, but the value of the asymptotic coefficient does. The asymptotics does not change
for ` = 0,( Amusia et al 2000) It was obtained also, that the ratios of the cross sections, defined
by Eq. (5) reach the asymptotics behavior at much smaller energies than the cross sections
themselves. This is because the leading terms beyond the asymptotics form the factor, which
is common for the cross sections of ionization of all the shells, thus canceling in the ratios
determined by Eq.(5) (Avdonina et al 2002).

In the present paper we found the analytical expressions for the asymptotical coefficients
of the photoionization cross sections beyond the IPA, by treating the final state correlations
perturbatively, using the technique developed by Drukarev and Strikman (1986, 1987). They
are given by Eqs. (37) and (39). These equations express the asymptotics through the matrix
elements of relatively simple operators between the IPA wave functions. We show, that at
` ≥ 2 the IPA breaking effects in the final state determine the asymptotics, while for ` = 1 the
IPA breaking effects in the ground state should be included. The contribution of the latter is
expressed through the complete set of IPA functions — Eq. (39).

We found the general expression for the ionization cross section of any state through the IPA
cross sections in the lowest order of expansion in powers of ξ2, defined by Eq. (6). This formula,
presented by Eq.(49) is true for the photon energies exceeding strongly the value I0 = 13.6 eV.
In other words, the energy expressed in Rydbergs should exceed unity strongly.

We obtain also the quantitative criteria which enables to predict, which of the couplings
are expected to be significant at the fixed value of the photon energy — Eq. (50). Additional
selection is provided, of course, by the values of the matrix elements.

For the important special case of ionization of the atom with s- and p-electrons only, the
asymptotics of the IPA ratio is described by Eq. (40). For this case we find a very explicit
picture of manifestation of IPA breaking effects. They change the slope and shift the line
described by Eq. (40). The change of the slope comes from the change in the value of the cross
section of ionization of np state, while the change of the shift comes due to the change of cross
section of the ionization of ns state — see Eqs. (51) and (52). The signs of the effects are
shown to be correlated: the diminishing of the slope corresponds to the shift of the line below
and vice versa.

We calculate also the common energy dependent factor, which is contained in the cross
section of ionization of any state and contains the leading terms beyond the asymptotics. By
using the results of asymptotic perturbation theory developed by Pratt and Tseng (1972) we
show, that this factor, depending on parameter πξZ is caused by interactions of the outgoing
electron with unscreened nucleus only and thus can be calculated by using the Coulomb wave
function for the description of the outgoing electron. This enables us to present the analytical
expression for this factor — Eqs. (63) and (64).
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Our analysis is completely nonrelativistic, i.e. we neglected both relativistic kinematics and
spin-orbit interactions. Thus, we limit ourselves to the values of the photon energies, which
are much smaller than the electron rest energy (which is 511 keV). In the present form our
approach also does not work for the internal electrons of the heavy atoms.

We apply our results for investigation of previously experimentally (Dias et al 1997, Hansen
et al 1999) and theoretically (Avdonina et al 2002) studied cases of ionization of external elec-
trons of Ne and Ar by the photons with the energies of about 1 keV. Note that the calculations
have been carried out in the papers of Dias et al (1997) and Hansen et al (1999). However, the
choise of IPA potentials was not clearified in these works. Thus, we can not compare our results
with the results of these calculations. For the case of Ne we calculated IPA breaking effects
both in the final and initial states by using Eqs. (51) and (52). The FSI determine about 90%
of the total value. The splits between IPA and IPA breaking results obtained in frameworks of
pertrubative approach and RPAE differ by less than 20%. Both results are consistent with the
experimental data.

For the case of Ar the IPA breaking effects are mostly due to 3s− 3p coupling. The results
of our perturbative calculations practically coincide with our RPAE results. By using the high
energy formula we show how the account of IPA breaking effects diminishes the shift of the
line determined by Eq. (73), i.e. how the account of IPA breaking effects brings us closer
to the asymptotics. The influence of 3p electrons on the ionization of 3s state compensates
to large extent the second (preasymptotic) term of rhs of Eq. (73). While the results of HF
computations are about twice as large as the experimental values the IPA breaking effects in
the final state diminish the discrepancy by about 60%. As it was reminded by Amusia (2000),
there can be also strong IPA breaking interactions in initial 3s state of Ar (Amusia et al 1982).
In the case of Ar our treatment of IPA breaking effects still diminishes strongly the discrepancy
between the experimental and theoretical results.

Thus we conclude our approach to be a good tool for investigation of IPA breaking effects
at the high energies.

We are indebted to S.T. Manson , T. Suric, N.A. Cherepkov and especially to R.H. Pratt for
useful discussions. One of us (E. G. D.) acknowledges hospitality during visits to the University
of Pittsburgh. This work was supported in part by NSF grants 9601752 and 9970293.
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10 FIGURE CAPTIONS

Fig.1 — Ratio of the 2s to2p ionization cross sections for Ne. The dots show the expetrimental
points of Dias et al ( 1997). The dashed and dashed -dotted lines show our HF and RPAE
results. The solid line shows our results with the perturbative treatment of IPA breaking effects.

Fig.2 — Ratio of the 3s to 3p ionization cross sections for Ar. The experimental points are
those of Hansen et al ( 1999). The meaning of the three lines is the same as in Fig. 1.
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