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Abstract. A brief review of recent advances in studying structures in energy

dependence of the bremsstrahlung cross sections for low incident electron energies is

presented. Examples of structures are given in both classical and quantum formalisms.

It is shown that the origin of the structures can be formulated as a lack of contribution

to the radiation from electrons with certain angular momenta at certain energies. In

quantum mechanics the lack of contribution to the total cross section from certain

electron angular momenta is due to zeroes in corresponding dipole matrix elements.

In classical mechanics summation over angular momentum is replaced by integration

and structures are due to suppressed or enhanced contribution from certain intervals

of angular momentum. A survey of the known properties of the matrix elements zeroes

is given.

1. Introduction

We give a brief review of recent advances in low-energy electron bremsstrahlung. We

mainly focus on the structures which appear in the dependences of the differential

bremsstrahlung cross section and the radiation asymmetry parameter on the incident

electron energy. These structures seem to be a characteristic of the low incident electron

energy region (for example, below 200 eV for Al).

The structures were initially discovered [1] within the classical formalism [2,3] in the

asymmetry parameter of radiation (see definition in section 2) considered as a function

of electron energy T for fixed various ratios of photon energy k/T . Later the structures

were identified in the differential cross section kdσ/dk [4]. Later similar structures

have also been observed in the quantum case within the partial waves formalism, at

approximately the same energies as the classical structures [5, 6].

Structures are observed both in quantum mechanical and classical descriptions of

bremsstrahlung. In both approaches they may be understood as resulting from lack of

contribution to the radiation from electrons with certain angular momenta at certain

energies. In quantum mechanics this means that the some of the dominant partial

contributions to the total cross section vanish for certain dipole transitions at certain

combinations of initial and final electron energies due to zeroes in the corresponding
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dipole matrix elements. In classical mechanics summation over the angular momenta

is replaced with integration; nevertheless, it is possible to isolate intervals of the

angular momenta whose contribution to the cross section is suppresed at certain electron

energies.

Currently, there are no experimental results for the electron energy range where the

structures are expected to be found. There are, however, recent experiments studying

energy dependence of bremsstrahlung (at fixed photon energy) for somewhat larger

energies for Ar targets [7, 8].

Zeroes in radial matrix elements, which give rise to the structures under discussion,

are a general phenomena occuring in various circumstances and leading to structures

in various observables. They exist both in relativistic and non-relativistic domains.

Most frequently they are found in numerical calculations and often only a very general

explanation can be given. Only in exceptional cases have properties of the zeroes been

established analytically. For example, one can rigorously prove that relativistic bound-

free dipole matrix elements vanish at certain energies, for any scattering potential [9].

For relativistic quadrupole transitions zeroes do also exist but no rigorous analytical

description of their properties has been given yet [9].

Probably, the best known example of structures caused by matrix elements zeroes

is Cooper minima in photoeffect cross sections. These minima are due to zeroes in

bound-free dipole matrix elements. These zeroes have been thoroughly studied and

tabulated [10–13].

We have found that zeroes in free-free dipole matrix elements are also of a general

nature. Our data suggest that they occur for at least some of the dipole transitions

in the field of any neutral atom, starting from Lithium. The typical range of incident

electron energies at which zeroes occur is 1-100 eV.

It should be noted that the results presented in the review concern the so-called

ordinary bremsstrahlung, resulting from the acceleration of a charged particle in the

static field of a target. There is also another mechanism of bremsstrahlung, the so-

called polarizational bremsstrahlung, resulting from dynamic excitation (polarization)

of a target’s structure by a projectile. For a discussion of these two mechanisms see [14],

or more detailed reviews in [15–18]. As with ordinary bremsstrahlung, polarizational

bremsstrahlung may also be discussed from a classical viewpoint, as in [19] or more

recently in [20]. A more complete treatment should also include this second mechanism

of bremsstrahlung production. However, the structures in the energy dependence

discussed here are pronounced even in the case of very low photon energies, where

dynamic polarization of the target is negligible. For small photon energies polarization

of the target is static in nature and can be accounted for by adding a polarizational “tail”

to the atomic potential thereby redefining the ordinary bremsstrahlung component.

Preliminary calculations show that this does not change the overall behaviour of the

structures [21] and, therefore, the polarizational mechanism can be left out in the initial

stage of exploration of the structures.

The atomic system of units h̄ = e = m = 1 is used throughout the paper.
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2. Quantum bremsstrahlung

It is known that the Born approximation for bremsstrahlung calculations is not adequate

for the case of slow electrons and one needs to use the partial waves expansion of the

incident electron wave functions (the so called distorted partial wave approximation)

[22–25]. In this approach the total bremsstrahlung cross section is expressed as a sum

of partial contributions each of which corresponds to a dipole transition between the

electronic partial waves:

k
dσ

dk
=

16π2

3

k4

T1c3

∞
∑

`1=0

∑

`2=`1±1

`>|M`1,`2(T1, T2)|2. (1)

Here indexes ’1’ and ’2’ refer to initial and final state of the incident elecron, respectively,

k is the photon energy, T is the electron energy, ` is the angular momentum, `> =

max(`1, `2), c is the speed of light, M`1,`2(T1, T2) is the radial dipole matrix element

between the states |T1, `1 > and < T2, `2|,

M`1,`2(T1, T2) =
∫

∞

0
PE2,`2(r)rPE1,`1(r)dr, (2)

where P (r) are the radial wave functions normalized to the δ-function of energy.

For low electron energies in scattering from neutral atoms only first few terms

contribute to the sum in equation (1). Hence, the total cross section is very sensitive to

the possible structures in the dominant matrix elements. In particular, if a dominant

matrix element vanishes at some certain ratio of initial and final electron energies, the

square of the matrix element as a function of one of the energies has a sharp minimum,

reaching zero, which can be of the form ∼ (E − Emin)
2.

We illustrate the consequences of the zeroes in the dominant matrix elements in

Figure 1, where the energy dependence of the total bremsstrahlung cross section is

plotted for three choices of the fraction of incident electron energy which is radiated.

The origin of the wide smooth minimum at an incident electron energy of about 10 eV

is made clear in Figure 2, where the partial contributions to the sum (1) are presented

for two ratios of the photon and electron energies. The figure makes it evident that the

structures seen in the energy dependence of the total cross section are to be understood

as resulting from zeroes in the dominant matrix elements, namely, in the transitions

0 ↔ 1 and 1 ↔ 2 in this particular case. Note that in the soft photon limit, k/T → 0,

matrix elements 0 → 1 and 1 → 0, 1 → 2 and 2 → 1, etc. are equal, while for larger

k/T the behaviours of the pairs of matrix elements are more spread out, resulting in a

slight widening of the structures in the total cross section.

Angular distributions of radiation are even more sensitive to zeroes in dominant

matrix elements. For dipole radiation it is customary to express the doubly differential

cross section describing the radiation emitted into a solid angle dΩk, in the frequency

interval k, k + dk, in terms of the singly differential cross section kdσ/dk and the

asymmetry parameter of radiation a2:

k
d2σ

dΩkdk
=

1

4π
k
dσ

dk

(

1 +
a2(k)

2
P2(cos θk)

)

. (3)



Review of structures in low-energy bremsstrahlung 4

1 5 10 50 100 500 1000
Electron energy in eV

0

50

100

150

200

250

C
r
o
s
s
s
e
c
t
i
o
n
i
n

b
a
r
n

Figure 1. Energy dependence of the bremsstrahlung cross section (1), for Al

for different ratios of photon energy k and incident electron energy T : solid line

k/T = 0.01, dashed line k/T = 0.2, dotted line k/T = 0.6. The figure is taken

from [5].

Here P2 is the Legendre polynomial of second order and θk is the azimuthal angle of

emission of the photon.

The asymmetry parameter of radiation is the single system-specific parameter

defining the angular distribution of radiation. The dependence of the asymmetry

parameter on the incident electron energy contains even more pronounced structures

than the spectra, which are again due to the zeroes in the dominant matrix elements.

An example of such structures for Al is presented in Figure 3.

A remarkable fact is that the character of the structures (it is especially true for the

spectra and in a lesser degree for the angular distributions) is largely independent of the

ratio k/T , and it is well characterized by the soft photon limit k/T → 0. Anticipating,

we can add that this is also the case for the classical description of the bremsstrahlung

process. In the classical approach this result is explained as being due to the fact that

the major part of radiation is emitted near the point of maximum acceleration, i.e. in

the vicinity of the turning point of the classical trajectory. At that point the electron

kinetic energy is much larger that the initial electron energy, and therefore it is much

larger than all physically allowed energies of radiation [19].

We may expect that the structures arising due to zeroes in the dominant matrix

elements can also be observed in bremsstrahlung spectra (1). The structures would

appear in spectra for certain incident electron energies, while there will be no structures



Review of structures in low-energy bremsstrahlung 5

1 5 10 50 100 500 1000
Electron energy in eV

0

50

100

150

200

C
r
o
s
s

s
e
c
t
i
o
n
i
n
b
a
r
n

b

1 5 10 50 100 500 1000
Electron energy in eV

0

50

100

150

200

C
r
o
s
s
s
e
c
t
i
o
n
i
n
b
a
r
n

a

Figure 2. Partial contributions of dominant matrix elements to the total

bremsstrahlung cross section (thick solid line) for the two values of ratio k/T : 0.01 (a)

and 0.2 (b). Dashed lines correspond to 0 → 1 and 1 → 0 transitions, dotted lines

correspond to 1 → 2 and 2 → 1 transitions and dashed-dotted lines correspond to

2 → 3 and 3 → 2 transitions. Note that for the soft photon limit k/T → 0 matrix

elements ` → `′ and `′ → ` are equal. For finite values of k/T the matrix elements are

spread out; we do not label them separately here. The figure is taken from [5].
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Figure 3. Energy dependence of the asymmetry parameter a2, for Al for different

ratios of photon energy k and projectile electron energy T : solid line k/T = 0.01,

dashed line k/T = 0.2, dotted line k/T = 0.6. The figure is taken from [5].

at other energies. To predict electron and photon energies at which the structures are

expected to appear one needs to understand the properties of the matrix element zeroes.

3. Zeroes of dipole matrix elements

3.1. Trajectories of matrix element zeroes

To study properties of matrix elements and in particular properties of their zeroes, it

is convenient to consider the matrix element for every given pair of angular momenta

`1 and `2 = `1 ± 1 as a function of two variables – initial and final electron energies T1

and T2. Then every free-free transition (both T1 and T2 are positive for bremsstrahlung

and inverse bremsstrahlung) corresponds to a point in the first quadrant of the (T1, T2)

plane. The matrix element is a continuous function of T1 and T2 over the first quadrant

of the (T1, T2) plane (except for the diagonal T1 = T2) and can be presented as a surface

in 3D space. On the diagonal, i.e. in the soft photon limit, T1 = T2, the matrix element

diverges as 1/(T1 − T2)
2.

To smooth out the behaviour of the matrix element near the soft photon limit

T2 → T1, one can use the acceleration form of the matrix element:

M`1,`2(T1, T2) = − 4

(T1 − T2)2
M(a)

`1,`2
(T1, T2), (4)

M(a)
`1,`2

(T1, T2) =
∫

∞

0
PE2,`2(r)

dV (r)

dr
PE1,`1(r)dr. (5)

Here V (r) is the atomic potential. Equality (4) holds for T1 6= T2, when the ”surface”

terms which generally appear in relations between different forms of the matrix element
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vanish (if the acceleration form is adopted for the entire integration interval). In the

case T1 = T2, there are additional singular terms, containing the Dirac’s delta-function

δ(T1 − T2) and its derivatives, on the right hand side of equation (4) [26–29].

For further simplification of the matrix element behaviour in the (T1, T2) plane, it

is convenient to re-normalize the wave functions as

P (r) ∼= r`+1 for r → 0. (6)

The boundary condition (6) does not depend on energy, so that it can be applied

to normalize any solution of the Schrödinger equation, including bound, unbound§,
continuum states, and states with complex energies. The matrix elements calculated

with these functions are called reduced matrix elements, because (6) omits the common

normalization factors which do not have the simple analytical properties in energy of

(6). We denote the reduced matrix element as M. We note that the renormalization

does not change any properties of the matrix elements zeroes, it just makes the surface

of the matrix element as a function plotted over the first quadrant of the (T1, T2) plane

smoother.

We plot an example of a matrix element surface in Figure 4 for the reduced matrix

element for the case of a d → p transition in the field of neutral Ba. The intersection of

the matrix element surface with the (T1, T2) plane is a trajectory on which the matrix

element is zero.

The thus obtained trajectories of matrix elements zeroes are much more convenient

object of study. Below we list some of the regularities found in the behavior of such

trajectories [30]. Understanding the general behavior of the trajectories as a function

of degree of ionicity, angular momentum, and features of the atomic potential is useful

for better understanding the general properties of radiation matrix elements and for

predicting the structures in the bremsstrahlung cross sections.

• Our sampling over the range of Z (and theoretical considerations discussed in the

next subsection) suggest that zeroes are observed in at least some matrix elements

for all elements, starting from Z > 2.

• In electron bremsstrahlung from neutral atoms zeroes in dipole matrix elements are

observed in all transitions involving either an initial or a final electron state with

an angular momentum for which there is at least one bound state in the neutral

atom potential. For example, zeroes occur in s → p and p → d transitions for Na

(for which s and p states can be bound) and in s → p, p → d and d → f transitions

for Ba (for which s, p, and d states can be bound).

• There is a general pattern of evolution for the trajectories of zeroes with increase

of ionicity:

§ An unbound state is a state with a negative energy which is not an eigenvalue of the Schrödinger

equation; the wave function of such a state is divergent at infinity. However, if the energy of an unbound

state is less than the energy of a bound state (in absolute value), than the integrand in (2) is finite at

infinity and the integral converges.
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Figure 4. The reduced matrix element for a d → p transition for Ba as a function

of initial and final electron energies. The intersection of the surface with the (T1, T2)

plane is a trajectory on which the matrix element is equal to zero. The figure is taken

from [6].

– For neutral atoms the trajectories always cross the diagonal (where initial and

final energies of the electron coincide, T1 = T2). In terms of consequences for

physical processes this means that zeroes in the matrix element occur for both

up and down transitions, `1 → `2 and `2 → `1.

– With increasing ionicity the trajectories shrink towards the origin, still crossing

the diagonal for low degrees of ionicity, but ceasing to cross the diagonal for

higher degrees of ionicity, see Figure 5. In the latter case the trajectories

approach and follow the diagonal towards the origin not crossing it. The degree

of ionicity at which the trajectories cease to cross the diagonal depends on

transition and element number. For lighter elements there are situations when

even for singly ionized atoms there is no diagonal crossing by the trajectory.

– If a trajectory does not cross the diagonal, it therefore stays either completely

above or completely below the diagonal, and energy conservation law implies

that zeroes in matrix element can occur for only one direction of the transition

(up or down). Our calculations show that the trajectories stay closer to

the axis with higher angular momentum. This leads us to the conclusion

that for the considered ionicity range zeroes in matrix elements can occur for

transitions ”down” for the case of emission of radiation (bremsstrahlung) and
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Figure 5. Evolution with ionicity of the trajectories of dipole matrix element zeroes

for neutral and partly ionized Ba, for a d → p transition. Numbers on the plot denote

the degree of ionicity for each trajectory. The figure is taken from [30].

for transitions ”up” for absorption of radiation (inverse bremsstrahlung).

– Eventually, for high enough ionicity, trajectories disappear from the free-free

quadrant, in accord with the analytical result predicting that there are no

zeroes in the point Coulomb field [31, 32]. Trajectories survive for higher

degrees of ionicity for higher angular momentum (i.e. with increasing ionicity

the s → p trajectory disappears first, then p → d, etc.).

• For a given ionicity, the larger the angular momenta involved, the further the

trajectory is away from the origin (i.e. zeroes occur at larger energies for higher

angular momenta).

In the next subsection we will indicate how the properties of the atomic potential

can be used for predicting at least some of the features in the behaviour of the

trajectories.
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3.2. Properties of atomic potential and matrix elements zeroes

A general remark is that both bound-free and free-free dipole matrix elements can

be studied for screened atomic and ionic potentials only. The screened nature of the

potentials in which the transitions take place is the crucial condition for existence of

zeroes, since there is a theorem which states that there are no zeroes in dipole matrix

elements for point Coulomb potentials [31, 32].

It appears that many of the properties of the trajectories of dipole matrix elements

zeroes can be explained in terms of the properties of short range phaseshifts in a given

potential. It is known that when T2 → T1 (the soft photon limit) the reduced dipole

matrix element is determined by the difference of the short range phaseshifts δ1 and δ2

for the corresponding angular momenta `1 and `2 [33]:

M`1,`2(T1, T2) →
4
√

T1

π
sin(δ1 − δ2). (7)

Therefore, at every energy T for which the phaseshift difference between `1 - and

`2 -waves is equal to an integral multiple of π, the dipole matrix element has a zero.

This means that the trajectory of zeroes crosses the diagonal in the (T1, T2) plane at

this energy T .

Levinson’s theorem [34–36] connects a phaseshift at zero energy δ`(0) to the number

of bound states n` with given angular momentum ` in a given neutral potential:

δ`(0) = n` π. Knowing the initial difference of the phaseshifts and recalling that

phaseshifts tend to zero as T → ∞, one may predict that the minimum number of

diagonal crossings is

Nmin = n1 − n2 − 1, (8)

where n1, n2 are the numbers of bound states with angular momenta `1 and `2, with

`1 < `2.

For example, the potential of neutral Ne binds two s -states and no p -states (ns = 2,

np = 0), requiring at least one diagonal crossing of a trajectory of zeroes. In Figure 6 we

show the dependence of the phaseshifts for s- and p-waves for neutral Ne. The vertical

arrow shows the momentum p for which the difference between the two phaseshifts

equals π. At this momentum the trajectory of the zero crosses the diagonal.

A similar argument can be made for ionic potentials, where the phaseshifts due to

the short range part of the ionic potential can be connected to the quantum defect µ(n),

defined by fitting the nth energy level

En = − Ry

(n − µ(n))2
, (9)

where Ry is the scaled Rydberg constant. Then [35, 36]

δ(0) = µ(∞) π (10)

and

Nmin =
[

µ1 − µ2

π

]

. (11)
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Figure 6. Phaseshifts for s- (upper curve) and p- (lower curve) waves for neutral

Ne plotted against momentum p =
√

2T . The arrow denotes the place where the

phaseshift difference equals π.

Here [x] is the largest integer m less than x.

One may make further predictions concerning the number of diagonal crossings

of trajectories if the sign of C in the expansion of the phaseshift for small momenta

p =
√

2T [37], is known:

δ(p) ≈ nπ + Cp2`+1. (12)

Qualitatively, C is negative if the uppermost bound state of angular momentum ` is

loosely bound, positive if it is tightly bound.

This allows us to predict that there is a diagonal crossing (and, hence, a trajectory

of matrix element zero) for the s → p transition in the field of neutral Na, even though

ns = 2, and np = 1, so that the minimum number of the diagonal crossings from (8) is

zero. The coefficients C for both the s - and p -waves in the field of Na are positive,

so that both s and p phaseshifts increase with momentum (see Figure 7). However, the

phaseshift of the s -wave grows faster with momentum, so that the difference between the

s and p phaseshifts, δs(p)−δp(p) grows at small momenta, starting from (ns−np)π = π,

becoming larger than π. The difference becomes zero in the limit of large momentum,

therefore crossing π at some momentum (shown in Figure 7 by the arrow).

We note that for realistic atomic neutral potentials, the number of bound states

with given angular momentum (i.e. the number of eigenvalues of the given momentum

calculated in a frozen neutral potential), correlate with the number of atomic subshells

with that momentum. This gives a possibility to connect directly the behavior of the

trajectories of zeroes in bremsstrahlung and inverse bremsstrahlung processes to the
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Figure 7. Same as in Figure 6 but for Na.

electronic configuration of the target atom.

4. Classical bremsstrahlung

It has long been established that the classical approach to bremsstrahlung calculations

[2, 3] for low incident electron energies can produce useful results both in the point

Coulomb case [38] and in the screened potentials [1, 5, 39]. In fact, the structures at

low energies in bremsstrahlung were first noted classically in the energy dependence of

the asymmetry parameter a2 for several fixed ratios k/T [1]. Later the structures were

also identified in the differential cross section ωdσ/dω [4]. Detailed analysis of these

structures and comparison with the quantum case can be found in [5, 6, 39]

In the previous sections we showed that the quantum structures may be related to

the zeroes of the radial matrix elements which occur for particular angular momenta

at particular energies. In other words, in the quantum case the lack of contribution

from some of the dominant radiative transitions (due to zeroes in corresponding matrix

elements) results in the observed structures. In this section we describe a corresponding

origin for the classical structures. We show that the classical structures have, essentially,

the same origin as the quantum ones, namely, the lack of contribution from a certain

range of angular momentum at certain incident electron energies.

In order to get a clear physical picture of the origin of the structures, we will take

advantage of the fact, previously noted in section 2, that the structures are not sensitive

to the ratio k/T , and they can be well characterized in the soft photon limit. In the

soft photon limit the only parameter necessary for determining the singly and doubly

differential cross sections is the electron scattering angle. Therefore, it turns out to
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be possible to relate the structures to the behaviour of the scattering angle in certain

ranges of angular momentum as incident energy changes.

We note the similarity between the classical and quantum cases. While the electron

scattering angle θ is the single parameter which characterizes bremsstrahlung in the

soft photon limit in the classical case, the scattering phase shift determines soft photon

bremsstrahlung in the quantum case. The two quantities are both determined from the

properties of the atomic potential, and they are connected (in WKB approximation)

through the relation [40]

θ(`)

2
=

∂δWKB
`

∂`
. (13)

4.1. Classical formalism in the soft photon limit

A formalism for classical bremsstrahlung and the soft-photon limit of dipole radiation

is given in [3]. An extensive analysis of classical bremsstrahlung in screened atomic

potentials, under the assumption that energy loss on trajectories is neglected, can be

found in [1, 4, 39]. We do not reproduce these results here, rather we focus on the

important points which help to understand the origin of the structures in the classical

case.

The doubly differential cross section describing the radiation emitted into a solid

angle dΩk, in the frequency interval (k, k + dk), may be written in the same form as in

the quantum case:

k
d2σ

dΩkdk
=

1

4π
k
dσ

dk

[

1 +
a2

2
P2(cos θk)

]

. (14)

In the classical case the bremsstrahlung spectrum

k
dσ

dk
=

8π

3c3
I1, (15)

and the asymmetry parameter a2,

a2 =
I2

I1

, (16)

are expressed in terms of quantities I1 and I2 which, in the soft photom limit, are simply

given as quadrature integrals over the scattering angle Φ(E, `), considered as a function

of angular momentum:

I s−ph
1 (T ) =

1

π

∞
∫

0

[1 − cos Φ(T, `)] ` d`, (17)

I s−ph
2 (T ) =

1

2π

∞
∫

0

[1 − cos Φ(T, `)] [3 cos Φ(T, `) − 1] ` d`, (18)

Φ(T, `) =

√

2

m
`

∞
∫

r0(T,`)

dr

r2
√

T − Veff(r, `)
− π. (19)
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Here

Veff(r, `) = V (r) +
`2

2mr2
, (20)

V (r) is the atomic potential, and r0(E, `) is the classical turning point defined by

E = Veff(r0(E, `), `). (21)

4.2. The origin of the structures in classical bremsstrahlung

The present discussion is based on [39], in which the structures in classical

bremsstrahlung were examined in greater detail. Here, we briefly restate the main

ideas, stressing the similarity between the classical and quantum descriptions.

Figure 8 illustrates the energy dependence of the classical bremsstrahlung cross

section in the soft photon limit. For comparison, the quantum result for k/T = 0.01 is

reproduced from Figure 1. The corresponding energy dependence of the asymmetry

parameter is shown in Figure 9. The quantum and classical cross sections and

asymmetry parameters agree well at higher electron energies. At lower energies both

quantum and classical results exhibit structures, although their quantitative agreement

gets worse.

Figure 8. Energy dependence of the classical (thick line) and quantum (thin

line) bremsstrahlung cross section in the soft-photon limit, for Al in a Hartree-Fock

potential. The figure is taken from [6].

What are the origins of the structures in the classical case? To answer this question

consider the integrand in (17),

J1(E, `) ≡ ` [1 − cos Φ(T, `)] , (22)
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Figure 9. Energy dependence of the classical (thick line) and quantum (thin line)

asymmetry parameter a2 in the soft-photon limit, for Al in a Hartree-Fock potential.

The figure is taken from [6].

plotted in Figures 10 and 11, which vanishes every time the scattering angle Φ(T, `)

(shown in the insets) as a function of ` crosses 2nπ. Such zeroes in (22) at particular `,

which occur over broad ranges in T , are not directly connected to the minima in the cross

section. However, if Φ(T, `) ' 2nπ in a wider range of `, this can lead to a minimum in

the cross section. This can happen, for instance, when Φ(T, `) has a broad maximum

near 2nπ, see, e.g., T = 26 eV in Figure 10. Another possibility is a ”shoulder” on a wing

of the maximum, such as occurs in Al for E ≈ 6.5 eV (Figure 11). The former situation

gives rise to the first minimum in the cross section, while the latter situation gives the

second minimum (moving from larger to smaller energies). Analogously, a maximum of

the cross section occurs when the scattering angle is approximately (2n+1)π in a wider

region of `.

The regions of ` in which the scattering angle stays around 2nπ or 2(n + 1)π

levels provide suppressed or enhanced contributions, respectively, to the total value of

the integral. In order to get a semi-quantitative estimate for these contributions we

divide the interval of integration into three subintervals in such a way that the second

subinterval contains the region where the scattering angle stays around 2nπ or 2(n+1)π

levels. The results of integration over the three subintervals are shown as histograms

in Figures 10 and 11. The darker bars correspond to the energies for which minimuma

of the cross section are observed. The lighter bars correspond to the energies for which

maxima neighbouring to the minima are observed. It can be seen that the contribution
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Figure 10. The subintegral expression J1 (22) for Al as a function of ` for two energies,

corresponding to the first minimum (thick line, E = 26 eV) and maximum (thin line,

E = 19 eV) of the cross section. In the inset we give the scattering angle Φ(E, `) as a

function of ` for these two energies (again, the thick line corresponds to the minimum,

the thin line to the maximum). We introduce three intervals in `: I – ` ∈ (0, `I), II

– ` ∈ (`I, `II), and III – ` ∈ (`II,∞). `I and `II are the solutions of Φ(E, `) = 2π for

E = 26 eV. The result of integration over these three regions is given in the histogram

(darker bars correspond to the minimum, E = 26 eV). The figure is taken from [39].

to the total integral from the region II is depressed for the minima and is somewhat

enhanced for the maxima. In fact, this is a general type of behavior which is repeated

for every pair of minimum/maximum (26 eV and 19 eV, 6.5 eV and 5.5 eV, and so

forth). We observe such behavior whenever there are structures in the cross section.

Therefore, the origin of the structures in the classical case is essentially the same

as in the quantum case. It is the lack of contributions from some values (regions) of

angular momenta at certain incident electron enegies. The only difference is that in the

quantum case the cross section is a sum over discrete angular momentum contributions

while in the classical case the cross section is obtained by integration over the continuous

range of angular momenta.

Another similarity to the quantum case is that the structures are not possible in the

point Coulomb field. The screened nature of atomic potential is crucial for observing the

structures. Indeed, for the first minimum to occur the scattering angle must increase

from its starting value of π at zero angular momenta to the level of 2π. This is not

possible for the point Coulomb potentials, for which the scattering angle is a monotonous

decreasing function of angular momentum. In the screened case it is also true for high

electron energies. However, at some energy (typically, it is several hundred eVs) the
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Figure 11. Same as in the Figure 10, but for energies corresponding to the second

minimum (thick line, E = 6.5 eV) and maximum (thin line, E = 5.5 eV) of the cross

section. `I and `II are defined here by the following equations: Φ(E, `I) = 3π and

Φ(E, `II) = 2π for E = 6.5 eV. The figure is taken from [39].

behaviour of the scattering angle at small angular momenta changes, and the scattering

angle increases at small `. At large ` it diminishes to zero which implies that there is

a maximum of the scattering angle at some value of `. This smooth wide maximum is

connected to two internally connected physical phenomena.

The first one is the main maximum in the energy dependence of the bremsstrahlung

cross section (T = 170 eV in Figure 8). In fact, this maximum has the same origin

as the set of smaller ones: an enhanced contribution from some range of angular

momentum. Indeed, for some energy interval the scattering angle has a wide smooth

low maximum, staying around π in a broad interval of angular momentum, so that

1 − cos Φ ≈ 2. This leads to large values of the integral for these energies and a high

prominent maximum in the cross section. For these same energies, another phenomenon

is observed in elastic electron scattering. Namely, a scattering angle staying around π

in a broad interval of angular momentum corresponds to enhanced backward scattering;

this phenomen in elastic electron scattering is called Coulomb glory [41,42]. It appears

that a similar argument has been used recently by Zon [43] in explaining experiments

on bremsstrahlung from electrons of intermediate energies.

The fact that the scattering angle for certain electron energies can stay around nπ

in a broader interval of angular momentum is sufficient for explanation of the structures
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seen in low energy classical bremsstrahlung. We will not discuss other features observed

in the behaviour of the scattering angle as the electron energy changes. We refer to the

original paper [39], where all these effects and their contribution to the overall behaviour

of the scattering angle are considered in detail.
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