Characterization of high energy photoionization in terms of the
singularities of the atomic potential: II. Photoionization of the
ground state of a two–electron atom

T. Surić*, E. G. Drukarev† and R. H. Pratt‡

*R. Bošković Institute, Zagreb, P. O. Box 180, 10000 Zagreb, Croatia.
†Petersburg Nuclear Physics Institute Gatchina, St. Petersburg 188300, Russia.
‡Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260.
(November 21, 2001)

Abstract

We describe single and double photoionization of two electron atoms by
photoabsorption at high incident photon energies ω (but still $\omega \ll m$) using a
unified approach [Surić et al. 1] based on asymptotic Fourier transform (AFT)
theory modified by Coulombic interactions. Within this approach the matrix
elements for photoabsorption processes at high energies can be understood in
terms of the singularities of the many–body Coulomb potential. These singular-
larities (e–e and e-N) result in the singularities of the wave functions and the
singularities of the e–γ interaction, which determine the asymptotic behavior
of the matrix element. Within our unified approach we explain the domi-
nant contributions, including both the dominant contributions to the total
cross section for single ionization and for ionization with excitation, and the
dominant contributions to the double ionization spectrum, as a FT asymp-
totic in a single large momentum (dependent on the process and the region of
the spectrum). These dominant contributions are connected, through AFT,
with either the e–N singularity or the e–e singularity. The asymptotic Fourier
transform results are modified by Coulombic interactions. We include these modifications, for the cases of single ionization and of double ionization in the shake–off region at high energies, and in this way we obtain rapid convergence of the cross sections to their high energy behaviors. This allows us to also discuss the convergence of ratios of cross sections.

PACS numbers: 32.80.Fb
1. INTRODUCTION

In this sequence of papers [1–3] we are exploring the understanding of high energy photoionization processes which follows from the theory of asymptotic Fourier transforms (AFT). Basically the AFT of a function is determined by its singularities. In our case this means that the high energy behavior of cross sections follows from the Coulomb singularities of the basic electron-nucleus and electron-electron interactions. In our first paper [1] we introduced the ideas of AFT for the simpler case of photoionization of an electron bound in a screened Coulombic central potential. In this second paper [2] we explore correlation issues, focusing on photoionization of the ground state of a two electron atom. Finally, in a third paper [3] we examine further issues which arise in the consideration of high energy photoionization of a many-electron atom.

Here we consider high energy photoabsorption in two–electron atoms, including correlation. We will discuss both single ionization, including also ionization with excitation [4] to any bound state, and double ionization. Our main concerns are with total cross sections and with the spectrum of double ionization. [By spectrum we mean the singly differential cross section for one detected electron energy in double ionization in photoabsorption at given incident photon energy, integrated over both electron angles.] In recent years the study of single photon absorption resulting in single or multiple ionization has attracted much attention [5–17], resulting in better understanding of electron correlation effects in complex systems and in photoabsorption processes involving these systems.

Our unified approach (AFT modified by Coulomb interaction) is based on the close relation between high energy photoabsorption matrix elements and asymptotic Fourier transforms (AFT) of functions with singularities (by a singularity we mean a point where a function is not differentiable). According to the AFT theory the asymptotic Fourier transform of a function with singularities is determined by the behavior of the function in the vicinity of these singularities [18,19]. Since photoabsorption at high photon energies requires at least one large outgoing electron momentum, we may generally argue that the analysis
is equivalent to the analysis of the asymptotics of Fourier transforms. A slow asymptotic
decrease for large p, such as $1/p^n$ in a $1/p$ asymptotic power expansion, of the Fourier trans-
form (FT) of a well localized function comes only from the singularities of that function.
Large p here means large in comparison to $a = mZ\alpha$, where Z is the nuclear charge and α
is the fine structure constant. We are using units $\hbar = c = 1$.

We show that the dominant contributions to the matrix elements determining high en-
ergy total cross sections for single ionization (including also excitations) and the dominant
contributions to the matrix elements determining the spectrum for double ionization are all
Fourier transforms in just one large momentum. [We will call such asymptotic situations
single AFT]. This large momentum is not necessarily associated with one particle, but it
characterizes the final state of the system. In single ionization and in the shake–off region
of the spectrum for double ionization the single large momentum is the momentum of one
electron. However in the quasi–free region (near–equal energy sharing region) of the double
ionization spectrum the large momentum is the relative momentum of the electron, and
in the final state interaction region of the double ionization spectrum (all the rest of the
spectrum) the large momentum is the total momentum. When all other momenta are small
we have a single AFT. In all these situations the large momentum, through AFT, connects
the dominant contribution (for the particular situation) with just one singularity, either e–N
(as in single ionization, or for double ionization in the shake–off region and in the final state
interaction region) or e–e (quasi–free region). We also show that in kinematical situations in
which the FT is not asymptotic in a single large momentum the contributions to the cross
sections decrease faster than for the dominant contributions.

The asymptotic Fourier transform results are modified by Coulombic interactions. We
include these modifications, for the cases of single ionization and of double ionization in
the shake–off region at high energies, and we obtain rapid convergence of the cross sections.
This fast convergence is achieved by explicitly pulling out a slowly converging Stobbe factor,
which is the same factor which appears in photoionization in IPA potentials with a Coulombic
singularity (see paper I). This allows us to discuss also the convergence of ratios of cross
Our objectives are: 1) To obtain the leading contribution \(i.e.\) the leading inverse power \((1/p_{\text{large}})\) in large momenta in the high energy matrix elements which determine the cross sections we are discussing, by using the AFT approach introduced in [1]. 2) To show that the leading contributions can be identified by identifying the kinematical regions in which the matrix element is an AFT in just one large momentum \(p_{\text{large}}\) (there must be at least one large momentum), which is associated, through the AFT theorem, with a singularity of the potential, and to find what knowledge of the singularity structure of the wave functions is needed in order to obtain form independent high energy results in leading order. 3) To include terms needed to obtain fast convergence (at least as \(1/p^2\)) of our results to the exact photoabsorption results. In particular, we study how the Stobbe factor, discussed in [1] from the viewpoint of IPA, appears in correlated systems in photoabsorption situations when one electron takes almost all of the energy (single ionization with excitation and double ionization in the shake-off region).

Using the AFT theorem [1,18,19], we can associate the leading contributions to the high energy matrix elements for these processes with the singularities of the two-electron potential energy. The potential energy of the two-electron atom is

\[
V(r_1, r_2) = -\frac{Z \alpha}{r_1} - \frac{Z \alpha}{r_2} + \frac{\alpha}{r_{12}},
\]

where \(r_{12} = |r_1 - r_2|\). This potential energy is singular (nondifferentiable) at the e-N coalescences \((r_1 = 0\) for any \(r_2\), and \(r_2 = 0\) for any \(r_1\)), and at the electron–electron (e-e) coalescence \([r_{12} = 0\) for any \(R = (r_1 + r_2)/2\)]. These coalescences we call double coalescences (points where two of the three particles meet). There is also a triple coalescence point where all three particles meet \((r_1 = r_2 = 0)\). The functions which appear in our photoionization matrix elements, are singular, \(i.e.\) non-differentiable, at the coalescence points [20–22]. The properties of wave functions in the near vicinity of double coalescence points (which are of primary importance for the dominant contributions we are studying) are well understood [20,21], and they can be obtained from the Schrödinger equation. They are known as
coalescence properties, and in the case of s-states they are often called Kato cusp conditions. We are using this term, Kato cusp conditions, more generally, as denoting the exact behavior of the wave functions at a two-particle singularity. (There will also be singularities in the e-γ interaction operator, depending on the form which we take, as we note below.)

The main points of the AFT approach when applied to photoionization of a two-electron atom are the same as in the one-electron atom case we have discussed in paper I. These points are: i) The matrix element for photoionization at high energies is a (generally double in the two-electron case) asymptotic Fourier transform in (generally two) large momenta. ii) At large energies at least one momentum has to be large (in both single and double ionization), and this means that at large energies we are, for any kinematics, in some asymptotic region. iii) The AFT theorem tells us that contributions which decrease slower than exponentially with increasing momenta (such as inverse powers of large momenta) are connected with singularities (points where the function being transformed is not differentiable). We have a single AFT in single ionization. In double ionization we generally have a double AFT; two momenta may be large. The additional large momentum brings additional powers in $1/p_{\text{large}}$. However there are three kinematical regions (which we call dominant kinematic regions) for total cross sections and spectra in which the matrix element is an asymptotic Fourier transform in just one large momentum (i.e. a single AFT).

The differences between the present two-electron case and the one-electron case which had been considered in paper I are the correlations between the two electrons (in both initial and final states), more kinds of kinematical situations, and more singularities. The leading contribution, at high energies, to the matrix element in any kinematic situation is determined by the singularities, in variables associated with the AFT, of the potential energy. The AFT results from the oscillating terms of the final state wave function, which oscillate rapidly in any kinematics. As indicated, we are not here considering general kinematics, but the kinematics which gives the dominant contributions to the total cross sections (for single and double ionization) and (in the case of double ionization) which gives the dominant contributions to the spectrum. In the case of the total cross section for high energy ionization
of a two-electron atom the relevant fast oscillating terms come from the plane waves of the final state, as in the one-electron case. However, when the spectrum for double ionization is considered, in some regions the dominant contributions may come from the spherical waves, too. [Spherical waves are the continuum state pieces which asymptotically behave as \(\exp(i pr)/r \).] In these dominant kinematics, which determine the spectrum in double ionization and the total cross section, there is a single fast oscillating term linked to just one of the two types of double singularities, through a single AFT, rather than with the triple singularity through a double AFT.

In the case of single ionization of a two-electron atom we here argue, using the AFT theorem, that the dominant contribution to the total cross section is associated with the e–N coalescence, as in the one-electron case, whether or not the atom is in its ground state. However, while the dominant contribution to the single ionization total cross section (when summed over all final bound states, \(i.e. \) so that excitations are not distinguished) of the ground state of a two-electron atom do not involve final state electron–electron interactions (and involve initial state correlation only in a normalization factor), regardless of the form used, the dominant contributions in the case of single ionization of a higher state do generally involve final state electron–electron interaction. This final state electron–electron interaction leads to predictions of an energy dependence of the cross sections for single ionization which are different from the IPA predictions, as we will note in Sec. III below and discuss further in paper III.

In the case of double ionization of the ground state of a two electron atom the leading contributions to the spectrum and to the total cross section are associated with one of the two singularities (either with e–e or with e–N coalescences), and both singularities contribute. However, as in the single ionization case, we demonstrate that the high energy double ionization total cross section of the ground state of a two–electron atom does not involve final state electron–electron interaction, regardless of the form used. It does now involve initial state e–e interaction beyond normalization (due to the e–e singularity).

The leading contributions to the spectrum are, as we show, single AFT in just one
large momentum. The kinematics of these leading contributions are such that the second Fourier transform is not in an asymptotic region. There are three such kinematic regions. The single large momentum may be the momentum \(p_1 \) of one electron (associated with the variable \(r_1 \) for which the potential has a singularity at \(r_1 = 0 \), the e–N singularity) while the momentum \(p_2 \) of the other electron is small (this region is known as the shake–off region). The single large momentum can also be the relative momentum \(p \) of the two electrons (associated with the relative distance \(r_{12} \) for which the potential has a singularity at \(r_{12} = 0 \), the e–e singularity), while the total momentum \(P \) is small (quasi–free region).

Also, the large momentum can be the total momentum \(p \) but with electron momenta \(p_1 \) and \(p_2 \) nearly perpendicular [final–state–interaction region, in which case the large momentum is associated with the variable \(r_1 \) (or \(r_2 \)), the e–N singularity]. The high energy total cross section is determined by the contributions from the shake–off and the quasi–free region, and the fast oscillating terms come from the plane wave parts of the two–electron final state. In the final state interaction region, which does not contribute to the total cross section in the leading order, the fast oscillating term comes from the product of a plane wave and a spherical wave. The search for dominant contributions to the total cross section and the spectrum therefore reduces to the search for the kinematical regions in which the matrix element is an AFT in just one large momentum, which is associated with a variable for which the potential has just one singularity (e–e or e–N). The fast oscillating terms of these single AFT come from plane waves and spherical waves. There is no region of the spectrum in which the leading contribution would have a fast oscillating term coming only from spherical waves.

The rest of the paper is organized in the following way. We first (Sec. II) describe the general matrix element (in V–, L– and A–form) for single and double ionization, from any state, which will be used throughout the paper, discussing the approximations appropriate for the considered energies and atoms. We proceed to discuss ionization of the ground state of a two–electron atom. We first (Sec. III) consider single ionization, including ionization with excitation. In discussing double ionization from the ground state we first (Sec. IV)
identify the three kinematical regions of observables which give the leading contributions to the three regions of the spectrum. We then discuss these leading contributions to the spectrum in the three regions separately, [contributions due to shake–off (Sec. V), quasi–free (Sec. VI), and final–state–interaction (Sec. VII)], and we discuss the procedures and conditions for obtaining these contributions. In the cases of single ionization (Sec. III) and of double ionization in the shake–off region (Sec. V) we also include modifications, due to Coulombic interaction, of the asymptotic Fourier transform results. Finally (Sec. VIII), we discuss the resulting double ionization cross section and the ratio of double to single ionization.

II. MATRIX ELEMENT FOR SINGLE AND DOUBLE IONIZATION AND TWO–ELECTRON WAVE FUNCTIONS

In our study we are assuming nonrelativistic electrons. We are neglecting L–S coupling and we factorize the two–electron wave functions into a spin part (which, in a two electron system, can be a symmetric triplet or an antisymmetric singlet) and a coordinate part. Further, since $\omega \ll m$, we neglect the interaction of radiation with electron spin. This means that the initial state and final state are either both spin singlets (symmetric coordinate part) or both spin triplets (antisymmetric coordinate part).

Within this description the matrix element for single or double photoionization by photoabsorption on a two–electron atom, in the lowest order of electron–photon interaction, where at least one electron of momentum p_1 is ejected, is

$$M = \int \Psi_{p_1,\lambda}(r_1, r_2) I^{2e}(r_1, r_2) \Psi_i(r_1, r_2) d^3r_1 d^3r_2. \tag{2}$$

Here $\Psi_i(r_1, r_2)$ is the coordinate part of the initial state wave function. $\Psi_{p_1,\lambda}(r_1, r_2)$ is the coordinate part of the two–electron wave function in the final state, where λ denotes the quantum numbers of the remaining bound electron in the case of single ionization, or it denotes the momentum p_2 of the other electron in the case of double ionization. I^{2e} is the photon–electron interaction, which in V–, L– and A–forms of the matrix element are:
\[I_{V}^{2e} = -i \left[e^{i k \cdot r_1} \mathbf{\epsilon} \cdot \nabla_1 + e^{i k \cdot r_2} \mathbf{\epsilon} \cdot \nabla_2 \right], \] (3a)

\[I_{L}^{2e} = \text{im} \left(\omega - \frac{k^2}{2m} \right) \left(\mathbf{\epsilon} \cdot \mathbf{r}_1 e^{i k \cdot r_1} + \mathbf{\epsilon} \cdot \mathbf{r}_2 e^{i k \cdot r_2} \right) - \left(e^{i k \cdot r_1} \mathbf{\epsilon} \cdot \mathbf{r}_1 \mathbf{k} \cdot \nabla_1 + e^{i k \cdot r_2} \mathbf{\epsilon} \cdot \mathbf{r}_2 \mathbf{k} \cdot \nabla_2 \right), \] (3b)

\[I_{A}^{2e} = \frac{1}{\omega - \frac{k^2}{2m}} \left[i Z \alpha \left(\frac{\mathbf{\epsilon} \cdot \mathbf{r}_1 e^{i k \cdot r_1} + \mathbf{\epsilon} \cdot \mathbf{r}_2 e^{i k \cdot r_2}}{r_1^2} \right) - i \mathbf{\epsilon} \cdot \hat{\mathbf{r}}_{12} \left(e^{i k \cdot r_1} - e^{i k \cdot r_2} \right) \right] - \frac{1}{m} \left(e^{i k \cdot r_1} \mathbf{k} \cdot \nabla_1 \mathbf{\epsilon} \cdot \nabla_1 + e^{i k \cdot r_2} \mathbf{k} \cdot \nabla_2 \mathbf{\epsilon} \cdot \nabla_2 \right), \] (3c)

where \(\mathbf{\epsilon} \) is photon polarization and \(\mathbf{k} \) is photon momentum. Note that, as in the one-electron case, the A-form of the electron–photon interaction is singular, and note that these singularities correspond to and result from the singularities of the potential energy.

In Eqs. (3) we have shown retardation included to all orders. When \(\omega \ll m \) and thus \(|k| \ll p_{\text{large}} \), we may neglect retardation entirely (put \(\mathbf{k} = 0 \) in the interaction term) for the leading contributions determined by the e–N singularity. This means that we may neglect retardation both in evaluating the leading contribution to the single ionization total cross section and, in the case of double ionization, when calculating the shake-off and the final state interaction contributions to the spectrum, neglecting the (retardation dependent) quasi-free contribution. Without retardation the two-electron forms are just the sums of the one electron forms, and we then use for \(I_{V}^{2e} \)

\[I_{V}^{2e} = I_{V}^{1e}(\mathbf{r}_1) + I_{V}^{1e}(\mathbf{r}_2) = -i \left(\mathbf{\epsilon} \cdot \nabla_1 + \mathbf{\epsilon} \cdot \nabla_2 \right), \] (4a)

\[I_{L}^{2e} = I_{L}^{1e}(\mathbf{r}_1) + I_{L}^{1e}(\mathbf{r}_2) = \text{im} \omega \left(\mathbf{\epsilon} \cdot \mathbf{r}_1 + \mathbf{\epsilon} \cdot \mathbf{r}_2 \right), \] (4b)

\[I_{A}^{2e} = I_{A}^{1e}(\mathbf{r}_1) + I_{A}^{1e}(\mathbf{r}_2) = \frac{i Z \alpha}{\omega} \left(\frac{\mathbf{\epsilon} \cdot \mathbf{r}_1}{r_1^2} + \frac{\mathbf{\epsilon} \cdot \mathbf{r}_2}{r_2^2} \right). \] (4c)

Note that, neglecting retardation, the electron–photon interaction in A–form does not contain the e–e singularity. The e–e singularity is present in the wave functions but, neglecting retardation, this singularity would not give contributions in leading order in any form, as we will see subsequently. For the leading contributions determined by the e–e singularity
(which gives the leading contribution in the quasi-free region of the spectrum), we need to include retardation at least to first order, as we do in Sec. VI in V- and A-forms.

In calculating the dominant contributions (to the total cross section and spectrum) the inclusion of lowest order retardation is needed in calculating the quasi-free contribution to the double ionization spectrum, which also contributes to the total double ionization cross section. Other dominant contributions to the total cross section (the shake-off contribution) can be treated neglecting retardation because, as we discuss in Sec. VIII, the retardation correction to the shake-off contribution is of relative order \(O(k^2/P_{\text{bare}}^2) \sim O(v^2/c^2) \) in comparison to the non-retarded term in the shake off region [23,24].

In our analysis we start with exact initial and final state wave functions. Our procedure of evaluating the leading contributions at high energies through expansion in terms of simpler functions around singular points allows us to identify the information from the two-electron wave functions needed to obtain the leading contributions in V-, L- or A-form. We may then use approximate wave functions which contain such information.

We write the exact final state two-electron wave function taking the form

\[
\Psi_{p_1,\lambda}(r_1, r_2) = \frac{1}{\sqrt{2}} \left[\Psi_{p_1}^{(-)}(r_1) \Psi_{\lambda}^{(-)}(r_2) D_{p_1,\lambda}(r_1, r_2) + \zeta (r_1 \leftrightarrow r_2) \right],
\]

where \(\zeta = 1 \) for symmetric states and \(\zeta = -1 \) for antisymmetric states, \(\Psi_{p}^{(-)}(r) = e^{ip \cdot r} \Phi_{p}^{(-)}(r) \) represents an outgoing electron in a pure Coulombic potential of a nucleus with charge \(Z \), \(\lambda \) denotes \(p_2 \) when double ionization is considered and denotes \((n,l,m) \) quantum numbers of a bound electron in a pure Coulombic potential with charge \(Z \) when single ionization is considered. The third factor \(D_{p_1,\lambda}(r_1, r_2) \) contains all final state e–e interaction. The form Eq. (5) is convenient because, in calculations, we will argue we may use the approximate 3C function [10,25], which is a product of three Coulomb one-particle functions, i.e. \(D \) is approximated by a Coulomb function in the e–e interaction; we will argue that 3C functions suffice for the high energy situations considered here. Namely, as we argue in Appendix B, the 3C function is accurate neglecting terms of the order \(Zm\alpha^2/E_f \) where \(E_f \) is the total energy of the two electrons in the final state and, therefore, the 3C function contains
accurately terms of order $Z m\alpha / p_{\text{large}}$ in the e–N interaction and terms of order $m\alpha / p_{\text{large}}$ in the e–e interaction ($p_{\text{large}} \approx \sqrt{2mE_f}$).

By substituting Eq. (5) into Eq. (2) and using the symmetry of the initial state (which is the same as the symmetry of the final state) the matrix element can be written in the form, asymmetric in final electron states [26],

$$M = \sqrt{2} \int \Psi_p^{(-)\ast}(\mathbf{r}_1) \Psi_\lambda^{(-)\ast}(\mathbf{r}_2) D_{p,\lambda}(\mathbf{r}_1, \mathbf{r}_2) I_{2e}(\mathbf{r}_1, \mathbf{r}_2) \Psi_i(\mathbf{r}_1, \mathbf{r}_2) d^3r_1 d^3r_2. \quad (6)$$

We use Eq. (6) to study the leading contributions to the matrix element for high energy single and double ionization of two–electron system with the Coulombic interaction of Eq. (1).

III. SINGLE IONIZATION AND e–N COALESCEENCE

In high energy single ionization [4], of a two electron atom, there is one fast emerging electron and we therefore, as in the ionization in a potential case of [1], are concerned with a single asymptotic Fourier transform with respect to a variable which can be taken as the electron–nucleus coordinate (we are here assuming a nucleus of infinite mass). The difference from ionization in a potential is that there is another variable. We wish to examine the role of the e–N coalescence and the e–e correlations in determining the high energy behavior of the cross section.

In this section we discuss the total cross section for ionization from the ground state of the atom. (In the paper III we will consider ionization from excited states, which is also relevant to ionization from shells outer to the K–shell in many electron atoms.) It is helpful to realize that the role of the e–N coalescence and e–e correlations, which we will describe here for single ionization, is the same as in double ionization in the shake-off region, discussed in Sec. V. (In both situations one electron takes almost all photon energy.)

The cross section for single ionization in general depends on both initial and final state electron–electron interaction. But when the initial state is the ground state, as we are considering here, high energy ionization with excitation into bound s–states (including also the
case without excitation of the remaining electron) is determined by initial state correlation only. For this reason the sudden approximation (which does not include the e–e interaction in the final state) is applicable in calculating high energy ionization from the ground state of a He–like system with excitations into s–states (and also in the shake–off double ionization total cross section) [27–30]. Excitations to non–s states, as demonstrated below, do depend on final state interaction. However at high energies the total cross section for single ionization of the ground state (when the final state of the bound electron is not observed, i.e. summing over all final states), is dominated by contributions involving only excitations into s–states, and therefore it is determined only by initial state correlation. We show this in V–, L–, and A–form.

We consider the dominant contribution to the matrix element for single ionization using Eq. (6), neglecting retardation in order to simplify our expressions, yet without losing generality for the energies considered ($\omega \ll m$). The three forms of the matrix element are obtained by substituting Eqs. (4) for $I^2(r_1, r_2)$ into Eq. (6), with $\lambda = (n, l, m)$ the quantum numbers of the final state bound electron. The matrix element for single ionization with excitation into the bound (n, l, m) state is thus

$$M^+_{nlm} = \sqrt{2} \int e^{-ip_1 \cdot r_1} \Phi^{(-)^*}_{p_1} (r_1) \Psi^*_{nlim}(r_2) D^{(-)*}_{p_1,nlim}(r_1, r_2) [I^1e(r_1) + I^1e(r_2)] \Psi_1(r_1, r_2) d^3r_1 d^3r_2.$$

(7)

The procedure of evaluation of the leading contribution to the single ionization matrix element is the same as in the one–electron case. Due to the large photon energy the outgoing electron momentum p_1 must be large. The term $\exp(-i p_1 \cdot r_1)$ is fast oscillating unless $p_1 r_1 \lesssim 1$. The dominant contribution for large p_1 is obtained in the vicinity of the e–N coalescence $r_1 = 0$ [1]. Note that this connection distinguishes $I^1e(r_1)$ (which is in the variable r_1) from $I^1e(r_2)$. The matrix element Eq. (7) is the sum of two terms $M^+ = M^+_d + M^+_ex$, a direct term (M^+_d) involving $I^1e(r_1)$, and an exchange term (M^+_ex) involving $I^1e(r_2)$. The leading contributions which concern us are obtained from M^+_d. However, when approximate wave functions are used in Eq. (7) the term M^+_ex may give spurious contributions (in L– and
V-form) of leading order. In order to see this we will keep track, in our discussion, of both M_d^+ (direct term) and M_{ee}^+ (exchange term).

To obtain the dominant contributions to the total cross sections we write the integrands around $r_1 = 0$ in terms of simpler functions, as discussed in [1]. In the vicinity of the Coulombic singularity we represent the exact wave function (except for its normalization), in terms of a Coulombic function for that electron plus a remainder. This representation is sufficient to give a fast convergence of the cross sections, as we demonstrate. [This is analogous to the IPA case, where the screening effects on the Coulombic shape of the wave functions in the vicinity of the coalescence were argued to be small.] This means that for small enough r_1 and fixed r_2

$$\Psi_i(r_1, r_2) = \frac{1}{N_i} \Psi_i(0, r_2) \Psi_i^C(r_1) + O(r_1^2; \hat{r}_1, r_2), \tag{8}$$

where $\Psi_i^C(r_1)$ is a Hydrogen–like bound state wave function satisfying the same Kato condition at the coalescence as the original function. $O(r_1^2; \hat{r}_1, r_2)$ means that the remainder vanishes faster than r_1 (e.g. like r_1^2) and it is a function of angles \hat{r}_1 and of r_2, too.

The partitioning Eq. (8) of the exact two–electron wave function is obtained with the following arguments. When one electron approaches the nucleus [$r_1 \ll r_0$, where r_0 is the size of the atom, $r_0 = 1/(mZ\alpha) \equiv 1/a$] while the other is at large distances [$r_2 \gg r_1$ and r_2 is not much smaller than r_0] then the ground state wave function can be written as

$$\Psi_i(r_1, r_2) = \Psi_i(0, r_2)(1 - ar_1)Y^0_0(\hat{r}_1) + O(r_1^2; \hat{r}_1, r_2),$$

which is just the statement of the e–N Kato cusp condition. We have then replaced $(1 - ar_1)Y^0_0$ with a Coulombic wave function Ψ_i^C/N_i which for small r_1 has the same behavior $(1 - ar_1 + \cdots)Y^0_0$ independent of energy for any s–state (we can take the K–shell function). We will use the partition Eq. (8) in integrations over all distances r_2 [and therefore also over $r_2 \lesssim r_1$, for which the partition Eq. (8) is not correct]. However, the region $r_2 \lesssim r_1$ for $r_1 \ll r_0$ of the function $\Psi_i(r_1, r_2)$ corresponds to the triple coalescence point, which gives a negligible contribution to the observables we are discussing. We will use partitioning similar to Eq. (8) throughout the paper, in the vicinity of both coalescences and for both initial and final state wave functions.
[31]. Note that we are assuming functions which satisfy the Kato conditions at the nucleus exactly. Some problems with approximate functions which do not satisfy Kato conditions at the nucleus, which have been used in some calculations, are noted below, and they are discussed further in Appendix A in connection with the form dependence of results.

For the final state, the same procedure leads to a partitioning similar to Eq. (8),

$$\Psi_f(r_1, r_2) = \Psi_f(0, r_2)\psi_C(r_1) + O\left(\frac{1}{p_1^2}\right),$$

where $O(1/p_1^2)$, in analogy with the IPA case discussed in paper I, denotes the remainder which vanishes faster than a/p_1 as p_1 increases. [In analogy with the IPA case we expect the contribution of these $O(1/p_1^2)$ and $O(p_1^2)$ of Eq. (8) and Eq. (9) will be small.]

Writing $\Psi_f(r_1, r_2)$ in the form of Eq. (5), and using Eq. (8) and Eq. (9), we obtain a factorization of the high energy matrix element Eq. (7),

$$M_{nim}^+ = M_{corr}M_{abs}^C + O\left(\frac{1}{p_1^4}\right).$$

Here M_{abs}^C is the Coulombic photoabsorption matrix element, determined by the singularity at the nucleus, which includes retardation and a Stobbe factor, as in the IPA case,

$$M_{abs}^C = \int \psi_{p_1}^C(r_1)\psi_{p_1}^C(r_1)\psi_{f}^C(r_1)d^3r_1.$$

(11)

M_{corr} contains initial and final state correlations which remain important at high energies:

$$M_{corr} = \sqrt{2}\frac{N_l}{N_1}\int \psi_n^{(-\lambda)}(r_2)D_{p_1,\lambda}(0, r_2)\psi_{f}(0, r_2)d^3r_2.$$

(12)

The results Eqs. (10–12) are obtained from Eq. (7) by performing the partition in terms of simpler functions describing the e–N singularity in both M_{q}^+ and M_{ex}^+. Neglecting the terms denoted by $O(r_1^2)$ in Eq. (8) and $O(1/p_1^2)$ in Eq. (9), the exchange term vanishes regardless of the form used. This is due to orthogonality of $\psi_C^P(r_1)$ and $\psi_C^C(r_1)$. [Within this approximation the exchange term factorizes too, but it contains the factor $\int \psi_C^P(r_1)\psi_C^C(r_1)d^3r_1$, which vanishes.] Our discussion proceeds neglecting terms $O(1/p_1^2)$ in Eq. (10).

First we discuss what the results Eqs. (10–12) mean. The absorption part Eq. (11) describes the absorption process which is determined, at high energies, by the Coulombic
shape (Hydrogen–like) of the wave functions at the coalescence. However, due to initial state and final state e–e interaction, these wave functions have normalizations (the wave functions normalization is defined through the expansion described earlier) which are different from the normalization of H–like functions. These normalizations enter photoabsorption at high energies through M_{corr}. The initial state correlation enters M_{corr} through $\Psi_i(0,r_2)$, which means that correlation is important between the electrons when one electron is at the e–N coalescence while the other electron is at some position r_2. The point is that at the position from which the electron is removed (at high energies) the shape of the wave function for that electron is Coulombic, and its value is affected by a constant factor (normalization) associated with the position of the second electron.

M_{abs}^C is the single electron Coulombic photoabsorption matrix element [32] (evaluated also in [1]). We therefore need only to evaluate M_{corr}. We are interested in obtaining cross sections accurate neglecting the order $1/p^2$. For this purpose we may use 3C functions [25] for the final two–electron state, as is argued in Appendix B. The 3C functions have been successfully applied to double ionization calculations of He at high energies (around 1 keV and above) [10].

The advantage of using 3C functions for the final state is that the integration in Eq. (12) can be performed analytically, which simplifies our discussion. Expression Eq. (10) itself is accurate within $O(1/p_1^2)$, where, as in the IPA case [1], we expect these $O(1/p_1^2)$ terms in Eq. (10) to be small. However, we can not demonstrate how large these terms are by using the 3C functions, which lack terms of the order $1/p_1^2$, which might be large even in the keV region (as we will discuss in next Sections in connection with double ionization). We therefore restrict our discussion of M_{corr}, neglecting all $1/p_1^2$ terms.

Denoting by $R_{ni}(r_2)$ the radial component of the Hydrogen–like state $\Psi_{nim}(r_2)$ and writing $\Psi(0,r_2) = (1/\sqrt{4\pi})R_i(r_2)$ (we are taking into account that this is a spherically symmetric function) we obtain that
\[
M_{\text{corr}} = \frac{\sqrt{3}}{N_1} \left\{ \begin{array}{ll}
\int R_{n0}(r_2)R_i(r_2)r_2^2dr_2 + \frac{ima}{p_1}X(a) + O(\frac{1}{p_1^2}) & l = 0, \\
-i\frac{ma}{p_1} \frac{\pi}{i(l+1)} Y_l^{-m^*} (\hat{\mathbf{p}}_1) \int R_{n}(r_2)R_i(r_2)r_2^2dr_2 + O(\frac{1}{p_1^2}) & l \neq 0.
\end{array} \right.
\] (13)

In Eq. (13) \(X(a)\) denotes a real quantity accurately given by 3C functions, which (due to the imaginary factor \(ima/p_1\)) contributes as \(1/p^2\) to the cross section (and for this reason we do not show it explicitly); \(O(1/p_1^2)\) denotes all terms which decrease faster than \(1/p_1\), which 3C functions can not reproduce correctly. Eq. (13) explicitly shows the leading terms of \(M_{\text{corr}}\). We will use these results in Sec. VIII in discussing the total cross section for single ionization.

We see from Eq. (13) and Eq. (10) that the total cross section for single ionization from the ground state of a He-like atom, at high energies, involves only \(l = 0\) bound states of the remaining electron. This is a well known result used in the study of high energy ionization with excitation and (through the completeness relation) in obtaining shake–off double ionization of two–electron atoms from the ground state [27,28,33]. Also, we see that this result, for \(l = 0\), does not depend on the final state interaction. (We show in Appendix A that final state interaction is not important at high energies regardless of the form used.) Further, we see that excitations to any \(l \neq 0\) state have just one additional power of \(1/p_1\), \textit{i.e.} excitations, in high energy single ionization, to \(l \neq 0\) states decrease as \(1/p^4\) for all \(l\). This is an important result which tell us that final state interactions can move an electron from an \(l = 0\) state to an \(l \neq 0\) state, with negligible transfer of energy, with just one additional power of \(1/p_1\). This fact and its consequences are further discussed in paper III, in examining single ionization from higher states and the modification of high energy IPA results. [The effect has been observed in a modification of the IPA result for single ionization from \(l \neq 0\) states [5,6], but here we see it also affects ionization from the \(l = 0\) state with excitations to \(l \neq 0\) states.]

Let us note the form dependence of the results. We have not yet fixed the form of photoabsorption matrix element. We restrict for the moment the discussion on the dependence of the result Eq. (10), for which the exchange term vanishes in any form, and afterwards
discuss the form dependence of the exchange term. The forms Eq. (4), which neglect retardation, are similar to the one electron forms [1] except that energies involved in Eq. (4) are two–electron $E_1 + E_2 - E_i = \omega$ (where E_1 is outgoing electron energy, E_2 is final state bound electron energy and E_i is initial state binding energy), while in one–electron forms the energies involved are one–electron, $E_1 - E_K = \omega$, where E_K is, for the case of ground state ionization which we consider here, binding energy of a K–shell electron. The difference in the fast electron energy (in the two and in the one electron case) is just $E_2 - E_i + E_K \simeq a^2/2m$.

Since the absorption factor M^C_{abs} in Eq. (10) is invariant on one electron forms, we conclude that the result Eq. (10) varies with forms Eq. (4) as $O(a^2/p_i^2)$ (i.e. varies within the order of neglected terms). This is just additional confirmation that our results are form invariant to the order we consider.

The contribution of the exchange term M^+_{ex} is also of an order which we have neglected in Eq. (10), as we discuss in Appendix A. There we show that M^+_{ex} can however be a source of spurious contributions, which may dominate the contribution described by Eq. (10), when approximate functions are used. This we discuss in Appendix A, including also the discussion of M^{++}_{ex} in the shake–off region, which is closely related to single ionization with excitation, and for which spurious contributions have been observed in numerical calculations of double ionization [27,28] (see Sec. V).

Since the exchange term can be neglected in high energy single ionization of the ground state of a He–like system, and since the remaining (direct term) matrix element has the same form as in the one–electron case, we may utilize all the remaining discussion of [1], i.e. the discussions of retardation, relativity and the Stobbe factor. This we do in Sec. VIII.

IV. IDENTIFYING THE THREE REGIONS OF THE DOUBLE IONIZATION SPECTRUM

We now turn our attention to double ionization of the ground state of a He–like atom. In general, if both ionized electrons are of high energy, the matrix element will correspond
to a double AFT, giving an asymptotic $1/p_{\text{large}}^7$ behavior ($p_{\text{large}} \sim \sqrt{2m\omega}$). However, there will be kinematic situations in which the matrix element reduces to a single AFT. If our interest is the resulting electron spectrum (integrated over electron angles), in all regions of the spectrum single AFT contributions will dominate. There are three situations which need to be distinguished [34-36]: 1) the endpoints of the spectrum, in which one electron is fast and the other one is slow (shake-off), and a single AFT contribution is associated with $e-N$ coalescence, giving a contribution in the matrix element $1/p_{\text{large}}^2$ (as in single ionization of ground state), which results in a $1/\omega^{7/2}$ contribution to the spectrum; 2) the middle of the spectrum, with electrons having nearly equal and opposite momenta (total momentum $\mathbf{p}_1 + \mathbf{p}_2 \sim 0$) (quasi-free region), and an AFT associated with the $e-e$ coalescence giving a contribution $(1/p_{\text{large}}^3)(k/p_{\text{large}})$, where k is the photon momentum (this contribution is not allowed in dipole approximation), which results in a $1/\omega^{5/2}$ contribution to the spectrum; 3) the remainder of the spectrum, with electrons having perpendicular momenta, in which case an AFT is associated with the $e-N$ coalescence and gives a matrix element of the order $1/p_{\text{large}}^6$, which results in a $1/\omega^{13/2}$ contribution to the spectrum.

These dominant contributions to the spectrum can be identified, as we will demonstrate for each region separately in Sec. V, Sec. VI and Sec. VII, by identifying the singularities and by identifying kinematics in which only one large momentum in the system is associated with just one two-particle coalescence (singularity). By minimizing the dimension of the asymptotic FT one singles out the dominant contributions. In order to understand what this means let us consider the ordinary AFT of a function $f(\mathbf{r}_1, \mathbf{r}_2)$ with singularities at $\mathbf{r}_1 = 0$, at $\mathbf{r}_2 = 0$, and at $\mathbf{r}_{12} = \mathbf{r}_1 - \mathbf{r}_2 = 0$ (we choose the same singularities as the functions in our photoabsorption matrix element have; we continue to call these singularities two-particle coalescence points in view of our physical picture of the process), i.e. we consider

$$F(\mathbf{p}_1, \mathbf{p}_2) = \int e^{-i\mathbf{p}_1 \cdot \mathbf{r}_1 - i\mathbf{p}_2 \cdot \mathbf{r}_2} f(\mathbf{r}_1, \mathbf{r}_2) d^3r_1 d^3r_2,$$

(14)

in the asymptotic region of $E = p_1^2 + p_2^2 \rightarrow \infty$. Minimizing the dimension of AFT means finding kinematics in which only one momentum will be large for $E \rightarrow \infty$, associated with
a two-particle coalescence. Some evident choices are \(p_1 \) large \((p_2 \) small\) or \(p_2 \) large \((p_1 \) small\). We then check whether that large momentum (let us say \(p_1 \)) is associated with a singularity (through the \(p_1 \cdot r_1 \) phase). Since it is, we will get a single AFT. [This would correspond to the SO region (edge region of the spectrum).] However these are not the only choices. Another choices become apparent by rewriting the argument of the oscillating term in Eq. (14) as \(i\mathbf{p}_1 \cdot \mathbf{r}_1 + i\mathbf{p}_2 \cdot \mathbf{r}_2 = i\mathbf{p}_{12} \cdot \mathbf{r}_{12} + i\mathbf{P} \cdot \mathbf{R} \) where \(\mathbf{r}_{12} = \mathbf{r}_1 - \mathbf{r}_2 \), \(\mathbf{R} = (\mathbf{r}_1 + \mathbf{r}_2)/2 \), \(\mathbf{p}_{12} = (\mathbf{p}_1 - \mathbf{p}_2)/2 \) and \(\mathbf{P} = \mathbf{p}_1 + \mathbf{p}_2 \). We may have kinematic situations in which \(p_{12} \) is large \((P \) is small\) or \(P \) is large \((p_{12} \) is small\) and so we can examine whether that large momentum is associated with a two-particle singularity. Large relative momentum \(p_{12} \) is associated with a two-particle coalescence, since \(\mathbf{r}_{12} \) is a two particle singularity which is distinct from the singularities in \(\mathbf{r}_1 \) and \(\mathbf{r}_2 \). [This would correspond to the QF region (central region of the spectrum).] But large \(P \) is not associated with a two particle coalescence. It is associated with a singularity at \(\mathbf{R} = \mathbf{0} \) and that singularity is present only when both \(\mathbf{r}_1 = \mathbf{0} \) and \(\mathbf{r}_2 = \mathbf{0} \); it is a three particle coalescence. With the kind of FT shown in Eq. (14), in the kinematics in which total momentum is large, and with a function with singularities as we have assumed, the AFT is not a single AFT.

In order to argue that the only single AFT, obtained with plane waves and three-particle Coulombic singularities, are those in the kinematics: 1) \(\mathbf{p}_1 \) large, \(\mathbf{p}_2 \) small; 2) \(\mathbf{p}_2 \) large, \(\mathbf{p}_1 \) small; and 3) \(\mathbf{p}_{12} \) large, \(\mathbf{P} \) small one may start from assumption that there is another kinematical situation in which some momentum \(\mathbf{q} \) is large while \(\mathbf{Q} \) is small where \(\mathbf{q} \) and \(\mathbf{Q} \) are linearly independent. Then we can express \(\mathbf{p}_1 = b\mathbf{q} + c\mathbf{Q} \) and \(\mathbf{p}_2 = b'\mathbf{q} + c'\mathbf{Q} \). With this the plane wave phase \(\varphi = \mathbf{p}_1 \cdot \mathbf{r}_1 + \mathbf{p}_2 \cdot \mathbf{r}_2 \) becomes \(\varphi = (b\mathbf{r}_1 + b'\mathbf{r}_2) \cdot \mathbf{q} + (c\mathbf{r}_1 + c'\mathbf{r}_2) \cdot \mathbf{Q} \). Now, as explained above, we examine whether the large momentum \(\mathbf{q} \) is associated with a two-particle coalescence. This requires \(b\mathbf{r}_1 + b'\mathbf{r}_2 \) to be \(\mathbf{r}_1 \) or \(\mathbf{r}_2 \) or \(\mathbf{r}_{12} \) (this determines \(b \) and \(b' \)) as these are the only such coalescences, from which one finds that \(\mathbf{q} \) (the large momentum) is \(\mathbf{p}_1 \) or \(\mathbf{p}_2 \) or \(\mathbf{p}_{12} \).

In the high energy photoabsorption matrix element integral, which we view as a generalized AFT, there are also other kinds of oscillations (in addition to the plane waves) as we
will discuss below, which have other oscillatory behaviors, \textit{i.e.} spherical waves. There are
kinematic situations in which the oscillatory term of the spherical wave would modify the
plane wave oscillatory terms in such a way that we get a single AFT even in the kinematical
region where both \(p_1 \) and \(p_2 \) are large. The kind of AFT we get in the FSI region (which we
consider in Sec. VII) and which can also lead to a single AFT is:

\[
F(p_1, p_2, q) = \int e^{-ip_1 \cdot r_1 - ip_2 \cdot r_2 + iqr_{12}} f(r_1, r_2) d^3r_1 d^3r_2, \tag{15}
\]

where \(r_{12} = |r_1 - r_2| \), and \(q \) is a parameter in this example (in the real calculation in Sec.
VII it is relative momentum). We will take both \(p_1 \) and \(p_2 \) as large. In such a situation,
without the modifying term \(\exp(iqr_{12}) \) we obtained the double AFT. However with the
modifying oscillatory term we may get a single AFT. If \(q \ll p_1, p_2 \) then the additional
oscillating term will not modify the fast oscillating terms \(\exp(-i p_1 \cdot r_1 - i p_2 \cdot r_2) \). However,
if \(q \simeq p_1 \) (or \(q \simeq p_2 \)), it will strongly modify (nearly cancel) the oscillations \(\exp(-i p_1 \cdot r_1) \)
[or \(\exp(-i p_2 \cdot r_2) \)] in the region in which \(p_1 \cdot r_1 \simeq qr_{12} \) (or \(p_2 \cdot r_2 \simeq qr_{12} \)). We will show later
(Sec.VII) how this cancellation of spherical wave and plane wave occur in the FSI region.
In double ionization this type of modification of the plane wave oscillations comes with an
additional \(1/P_{\text{large}}^2 \) factor (which is associated with the scattering amplitude). Although this
contribution dominates the contribution from two singularities (three particle coalescence)
it is smaller (higher powers in \(1/P_{\text{large}} \)) than the contributions from the edge and the central
region.

These types of single AFT are the only ones that appear in determining dominant con-
tributions to the spectrum, assuming that it is correct to write matrix elements as Born
terms (including first order in \(e-e \) and \(e-N \) interaction) and a remainder which vanishes
faster than the Born terms for large momenta. Then these are the only oscillating factors,
neglecting higher order terms in Born expansion. Given these oscillations, the question is
what are the kinematics in which these oscillations reduce to single AFT. For the plane wave
oscillations we saw that the dominant contributions (single AFT) are obtained only in SO
and QF kinematics. With modified oscillations Eq. (15) there are also two kinematic regions
in which it reduces to single AFT. One is for orthogonal outgoing electron momenta, which gives the dominant contribution in the FSI region of the spectrum. The other is for nearly equal and nearly parallel outgoing electron momenta, which contributes in the quasi–free region. Since the modified AFT Eq. (15) comes with an additional $1/p_{\text{large}}^2$ factor (unlike the QF contribution determined by the plane wave oscillations) it is negligible and we do not discuss it here.

V. THE SHAKE–OFF CONTRIBUTION TO DOUBLE IONIZATION AND THE e–N COALESCENCE

In the edge region of the spectrum for double ionization the momentum of one electron is very large while the momentum of the other electron is small ($p_1 \sim p_{\text{large}} = \sqrt{2m\omega}$ while $p_2 \ll a$, or vice versa). The shake–off mechanism provides the dominant contribution in this region, called the shake–off (SO) contribution. Here, double ionization can be described in terms of the sudden approximation and the cross section factorizes as in a two step process [37]. In the first step photoabsorption occurs with the ejection of a single electron. The nucleus and the electron are involved in the absorption process and have to be close to each other in order to exchange a large momentum (much larger then the average momentum of the bound electrons), as required by energy and momentum conservation. Afterwards, the nucleus and the electron have nearly equal and opposite momentum, while the electron (having much smaller mass) takes almost all the photon energy and is moving at high velocity. The nucleus has very low velocity (and the second electron is still associated with it). In the second step the second electron, in a state which reflects the initial state correlation, shakes off, taking generally a small amount of energy and momentum, reflecting the momentum distribution of that electron in the initial state. The leading contribution in this region of the spectrum is, therefore, associated with the kinematics in which the fast electron momentum (say p_1) and the nucleus momentum are nearly equal and opposite. The other electron shakes off. The SO contribution, like single ionization, is a FT in just
one large momentum p_1, and it is determined by the e–N coalescence.

The evaluation of the SO contribution follows the same procedure that we used in calculating the dominant (shake–up) contribution to the cross sections for single ionization and ionization with excitation, Sec. III. In both cases the singularity which determines the dominant contribution is the e–N singularity, and the second electron (the electron not involved in the absorption) takes a small portion of the photon energy and is left in one of the eigenstates of the one electron nuclear point Coulomb Hamiltonian, i.e in both cases the electron shakes (up or off). The entire discussion of the dominant contribution in the edge region, the results in different forms (such as the importance of the final state e–e interaction in L–form), the needed quality of approximate wave functions and the possible sources of spurious contributions can all simply be taken from the discussion of single ionization with excitation in Sec. III. However, since these issues have widely been discussed in double ionization and some of them have not been fully resolved (e.g the importance of the final state e–e interaction in the SO region in L–form [38]) we briefly repeat the arguments.

As in Sec. III we start with the matrix element

$$M^{++} = \sqrt{2} \int e^{-i p_1 \cdot r_1 - i p_2 \cdot r_2} \Phi^{(-)}(r_1) \Phi^{(-)}(r_2) D^{(-)}(r_1, r_2)$$

$$\times [I^{1e}(r_1) + I^{1e}(r_2)] \Psi_1(r_1, r_2) d^3 r_1 d^3 r_2,$$

(16)

neglecting retardation, and writing explicitly plane wave oscillating terms of both outgoing electrons. In the edge region one momentum (say p_1) is large while the other is small. Therefore the fast oscillating term $\exp(i p_1 \cdot r_1)$, from the plane wave of the final state associates (through the FT theorem) this large momentum with the coalescence (singularity) $r_1 = 0$.

We now write the integrand of the matrix element integral around this coalescence in terms of simpler functions (partitioning in terms of Coulomb functions and a remainder; as in the other cases Coulombic functions are sufficiently accurate for our purposes). Using the same reasoning which led to Eq. (10–12) for single ionization with excitation from the ground state, by using Eq. (8) and Eq. (9) (but with the other electron now also being in
continuum), we obtain a factorization of the matrix element in the edge region of the ground state double ionization spectrum

\[M_{SO}^{++} = M_{corr} M_{abs}^C + O \left(\frac{1}{p_1^2} \right), \]

(17)

where \(O(1/p_1^2) \) represents the order of terms which we are now neglecting. \(M_{abs}^C \) is the Coulombic photoabsorption matrix element determined by the singularity at the nucleus (which includes retardation and a Stobbe factor as in the IPA case),

\[M_{abs}^C = \int \Psi_{p_1}^{(-)*}(\mathbf{r}_1) I_{1e}(\mathbf{r}_1) \Psi_i^C(\mathbf{r}_1) d^3 r_1, \]

(18)

while \(M_{corr} \) contains initial and final state correlation important at high energies:

\[M_{corr} = \frac{\sqrt{2}}{N_i} \int \Psi_{p_2}^{(-)*}(\mathbf{r}_2) D_{p_1,p_2}^{(-)*}(0, \mathbf{r}_2) \Psi_i(0, \mathbf{r}_2) d^3 r_2. \]

(19)

As in Sec. III the functions \(\Psi_i^C \) and \(\Psi_{p_1}^C \) are single electron Coulomb functions used in partitioning of the exact wave function in the vicinity of the nucleus taken so that Kato conditions at the nucleus are satisfied.

Note that the only difference from the single ionization case (Sec. III) is in the final state of the second electron, which is here a slow continuum electron, instead of a bound electron, in the field of the nuclear charge. As in Sec. III we are interested in obtaining cross sections accurate neglecting the order \(1/p_1^2 \). For this purpose we may use 3C functions [25] for the final two–electron state. As argued in Appendix B, the 3C functions are accurate neglecting terms of order \(1/p_1^2 \), which is consistent with the accuracy of Eq. (17). The 3C functions have been successfully applied to double ionization calculations of He at high energies (around 1 keV and above) [10]. In the limit \(p_1 \to \infty, p_2 \sim a \), the function \(D_{p_1,p_2}(0, \mathbf{r}_2) \) approaches 1 + \(O(1/p_1) \) and \(M_{corr} \) approaches the shake–off limit

\[M_{corr} = \frac{\sqrt{2}}{N_i} \int \Psi_{p_2}^{(-)*}(\mathbf{r}_2) \Psi_i(0, \mathbf{r}_2) d^3 r_2. \]

(20)

We will discuss the convergence of the cross section toward this SO limit in Sec. VIII. We note that, as in the ionization–excitation case, the first correction to the shake–off limit
Eq. (20) is a relative $1/p_1^2$ correction in the cross section. The slowly converging term (the Stobbe factor which converges as $\pi ma/p_1$) obtained from M_{abs} is not affected by the correlation factor.

Let us note the form dependence of the result Eq. (17), which is determined by the form dependence of the absorption factor M_{abs}, as in single ionization (Sec. III). The forms Eq. (4), which neglect retardation, are similar to the one electron forms [1] except that energies involved in Eq. (4) are two-electron $E_1 + E_2 - E_i = \omega$ (where E_1 is energy of the fast electron, E_2 is energy of the slow electron, and E_i is initial state binding energy), while in one-electron forms the energies involved are one-electron, $E_i - E_K = \omega$, where E_K is, for the case of ground state ionization which we consider here, the binding energy of a K–shell electron. The difference in the fast electron energy (in the two and in the one electron case) is just $E_2 - E_i + E_K \simeq a^2/2m$, since also $E_2 \simeq a^2/2m$ in the SO region. Since the absorption factor M_{abs}^C in Eq. (18) is invariant in one electron forms, we conclude that calculations of the leading term in Eq. (17) vary with the forms Eq. (4) by amounts $O(a^2/p_1^2)$, as would be expected.

The discussion of the form dependence of the exchange term [which vanishes at the level of accuracy obtained with Eq. (8) and Eq. (9), as already explained in Sec. III] follows the discussion of Sec. III. The discussion in Appendix A is applicable in the SO region here, too. We may just repeat the conclusion that if the e–N coalescence is treated incorrectly in the initial or final state a spurious contribution appears. While the relative contribution of this spurious contribution in A–form and (for the ground state) in V–form is negligible, it may be the dominant contribution (a spurious $1/p^2$ contribution) in L–form. However (see Appendix A), in the SO region, if the wave functions satisfy the Kato e–N cusp conditions (as for example an uncorrelated product of the Coulombic wave functions does) there is no spurious $1/p^2$ contribution. (This was also shown by Åberg [28] for double ionization in the SO region). Of particular importance is the finding (Appendix A) that an exact initial state wave function with uncorrelated final state wave functions gives the correct high energy result Eq. (16). [This finding does not seem to be in accordance with the many
body perturbation calculations of [38], in which diagrams containing final state interaction
(so called TS1 and SO) are large and interfere destructively with diagrams containing only
initial state correlation (GSC) [39].] The finding is important because it demonstrates that
the sudden approximation (which neglects the final state e–e interaction, and which has
been widely used in obtaining the high energy double to single ionization ratio) is form
invariant. However, the needed representation of the fast electron is form dependent, i.e.
the fast electron can not, in general, simply be represented by plane waves.

The leading contribution in the SO region of double ionization of He is of the same order
$1/p_{\text{large}}^3$ as the leading shake–up contribution for single ionization of He, since the leading
contribution is determined by the leading contribution of the absorption factor M_{abs}^C, which
is the same, in high energy limit, in both shake processes. The leading contributions in both
cases are a FT in just one large momentum associated with the same e–N singularity and
the fast oscillating term comes from the plane wave part of the final state.

We may now look at what happens to the SO contribution Eq. (16), in which final state
interaction is neglected and which is connected to the e–N coalescence, when the other
momentum (p_2 in this case) also becomes large (here we assume no specific kinematics), i.e
when $p_1 \gg p_2 \gg a$. This analysis helps us understand how large is the SO region and it
will help in understanding the importance of the final state interaction in situations when
$p_2 \gg a$ which we now neglect, but will consider in Sec. VII. When $p_2 \gg a$ the correlation
factor M_{corr}, Eq. (19), becomes an asymptotic FT in p_2, too. The fast oscillating term
$\exp(ip_2 \cdot r_2)$ connects the leading contribution to the coalescence $r_2 = 0$. By expanding
$\Psi(0, r_2)$ and $\Phi(r_2)$ around $r_2 = 0$ we obtain

$$M_{\text{corr}} \sim \int e^{-i(p_2 \cdot r_2)} (1 - i \frac{a}{p_2} q(r_2) + O(\frac{a^2}{p_2^2})) \Psi(0, 0)(1 + a'r_2 + O(r_2^2)) d^3 r_2 \sim \frac{1}{p_{\text{large}}}, \quad (21)$$

where now $a \neq a'$. (That this is correct for initial state, we will see in the paragraph below.
This is then sufficient to say that the result Eq. (21) decreases at least as $1/p_{\text{large}}^4$ or faster.)

From Eq. (21) we see that the correlation factor adds four more powers and, together
with the absorption factor which decreases asymptotically as $1/p_1^3$, results in matrix element
which decreases as $1/p_{\text{large}}^7$.

The contribution Eq. (21) comes from the configuration region in which both electrons are in the vicinity of the nucleus. We may therefore call this contribution a triple coalescence contribution. However, due to the order in which the limits were taken we have $r_1 \ll r_2 \ll 1/a$. We may ask what is the contribution from the triple coalescence when both electrons are at a similar, but small distances from the nucleus. The answer is that such a contribution is again of the order $1/p_{\text{large}}^7$. The argument is as follows. At the triple coalescence point the ground state wave function can be expanded in terms of hypergeometric coordinates [22],

$$
\Psi(r, \vartheta, \varphi) = \sum_{k=0}^{\infty} r^k \sum_{p=0}^{k} \psi_{kp}(\vartheta, \varphi) (\ln r)^p
$$

$$
= 1 - a(r_1 + r_2) + \frac{m\alpha}{2} r_{12} + O(r^2),
$$

(22)

where $r = \sqrt{r_1^2 + r_2^2}$ is the hyper-radius, ϑ, φ are hyper-angles and $O(r^2)$ denotes terms which decrease faster than r when r is vanishing (in fact, these terms vanish at least as $r^2 \ln r$). We see that the leading terms in this expansion are in fact just powers in r_1, r_2 and r_{12}. If we use the A-form of the matrix element (which is singular in r_1, r_2 and r_{12}, and the singularity is described by the powers of these coordinates) the leading contribution of AFT of Eq. (22) comes from a product of powers (of coordinates) and therefore is a power in $1/p_{\text{large}}$ in any kinematics. Product of powers (of different coordinates) can then be integrated independently. [Terms which can not be integrated independently arise from logarithmic terms, but these vanish faster than r for decreasing r.] We point out again that the triple singularity is not reached in all kinematics when the final state interaction is negligible, but only in kinematics in which all momenta (p_1, p_2 relative momentum p_{12} and total momentum P) are large. In such cases, there is a $1/p_{\text{large}}^7$ contribution from the triple coalescence.

We will now demonstrate, in the next two Sections, that due to final state interaction (in the intermediate region), and due to the $r_{12} = 0$ singularity (in the central region of the spectrum), the leading contributions away from the edge region are also connected with just one singularity [unlike in Eq. (21)] and are of a lower power than $1/p_{\text{large}}^7$.

27
VI. THE QUASI–FREE CONTRIBUTION TO DOUBLE IONIZATION AND THE

e–e COALESCEENCE

As in our earlier examples, another kinematic situation when a double FT reduces to a
single AFT occurs when total momentum of the two outgoing electrons \(\mathbf{P} = \mathbf{p}_1 + \mathbf{p}_2 \) is small
\((P \sim a) \). In this case the relative momentum of the two electrons is large \((p_{12} = p_{\text{large}}) \). The
two electrons leave the atom with nearly equal and opposite momentum, and the nucleus
is a passive spectator not receiving energy or momentum [34]. While a photon can not be
absorbed by one free electron, it can be absorbed by two free electrons, although not in
dipole approximation.

With these momenta the plane wave oscillating term of the final state wave function
\(\exp(i\mathbf{p}_1 \cdot \mathbf{r}_1 + i\mathbf{p}_2 \cdot \mathbf{r}_2) \) can be written, using coordinates \(\mathbf{r}_{12} \) and \(\mathbf{R} \), as \(\exp(i\mathbf{p}_{12} \cdot \mathbf{r}_{12} + i\mathbf{P} \cdot \mathbf{R}) \).
The matrix element is a FT in just one large momentum \(\mathbf{p}_{12} \), associated with the coordinate
\(\mathbf{r}_{12} \) in which the potential energy is singular at \(\mathbf{r}_{12} = 0 \) (singularity when two electrons meet).
The modifications of the fast plane wave oscillations can, in principle, contribute (just as in
the SO region discussed in the previous Section), but these modifications always come with
additional powers in \(1/p_{\text{large}} \). Here we are interested in the leading contribution.

To evaluate the leading contribution to the spectrum in the equal energy sharing region
of the spectrum we may start from the exact nonrelativistic matrix element Eq. (6). We
again represent the integrand near the coalescence \(\mathbf{r}_{12} = 0 \) in terms of simpler functions and
a remainder. As simple functions we again use Coulombic functions or pieces of Coulombic
functions, for initial and final states, which satisfy the Kato condition at the singularity. This
is sufficient for our purposes if V–form or A–form of the matrix element is considered. (For
L–form one needs better knowledge of the wave functions in the vicinity of the coalescence.)
The e–\(\gamma \) interaction is expanded in powers of \(\mathbf{r}_{12} \). It is hence more convenient to express
the wave functions and the electron–photon interaction operator in terms of the coordinates
\(\mathbf{r}_{12} \) and \(\mathbf{R} \). We will keep retardation to first order in its expansion around the singularity
at \(\mathbf{r}_{12} = 0 \) (and we will see that we get no contribution in zero order). For the final
state wave function, we again use the 3C function which is, as argued in Appendix B, accurate neglecting terms of order $Zm\alpha/E_f$. The functions $\Psi^{(-)}_{\mathbf{p}_i} = \exp(i\mathbf{p}_i \cdot \mathbf{r}_i)\Phi^{(-)}_{\mathbf{p}_i}(\mathbf{r}_i)$ ($i=1,2$) are regular at $\mathbf{r}_{12} = 0$, except at the triple coalescence, which we have argued gives contributions of higher powers in $1/p\text{arge}$. Note also that, due to $p_i \gg a$, we can expand $\Phi^{(-)}_{\mathbf{p}_i}(\mathbf{r}_i)$ in a/p_i, or use the g-function as explained in [1], i.e. we can make the approximation $\Phi^{(-)}_{\mathbf{p}_i}(\mathbf{r}_i) = N_i[1 - (a/p_i)g_i]$. For the term containing the e–e interaction we use the approximate form $D_{p_1,p_2}(\mathbf{r}_1,\mathbf{r}_2) = N_D[1 + (m\alpha/2p_{12})g]$, which correctly describes the \mathbf{r}_{12} singularity to this order. The g_i functions from $\Phi^{(-)}_{\mathbf{p}_i}(\mathbf{r}_i)$ contribute in higher order in $1/p\text{arge}$, while the g–function from the e–e interaction term is important for the proper description of the coalescence, and it will be needed for a proper treatment in V–form.

The leading contribution can thus be obtained from

$$
M_{QF}^{++} = \sqrt{2}N_f \int e^{-(\mathbf{r}_{12}+i\mathbf{p}_{12}\mathbf{r}_{12}+i\mathbf{P}\cdot\mathbf{R})} \left[1 - i \frac{\nu}{p_{12}} g^{(-)^*}[i(p_{12}\mathbf{r}_{12} + \mathbf{p}_{12} \cdot \mathbf{r}_{12})] + O\left(\frac{\nu^2}{p_{12}^2}\right) \right] \\
\times I^{2e}(\mathbf{r}_{12},\mathbf{R}) \tilde{\Psi}(0,\mathbf{R})(1 + \nu r_{12} + O(r_{12}^2))d^3r_{12}d^3R,
$$

(23)

where $\tilde{\Psi}(\mathbf{r}_{12},\mathbf{R}) = \Psi(\mathbf{r}_1,\mathbf{r}_2)$ and $\nu = m\alpha/2$. In Eq. (23) we use the partition $\tilde{\Psi}(\mathbf{r}_{12},\mathbf{R}) = \tilde{\Psi}(0,\mathbf{R})(1 + \nu r_{12} + O(r_{12}^2))$, [22], which follows from the Kato conditions. The neglected terms vanish faster than r_{12} for $r_{12} \to 0$. The central region of the spectrum, in which the matrix element for double ionization is dominated by the contribution Eq. (23), is (at nonrelativistic energies) determined by the condition [34]

$$
\frac{|E_1 - E_2|}{\omega} \leq \left(\frac{\omega}{m}\right)^{\frac{1}{2}},
$$

(24)

obtained from free electron kinematics (i.e. assuming absorption of a photon from two free electrons at rest).

In A–form the electron–photon interaction operator Eq. (3) may be expressed in $\mathbf{r}_{12},\mathbf{R}$ coordinates and expanded around the singularity $\mathbf{r}_{12} = 0$. Keeping first order in retardation and the leading (singular) term in r_{12} we obtain

$$
I_{A}^{2e} = -i\frac{\alpha \mathbf{e} \cdot \mathbf{r}_{12} \mathbf{k} \cdot \mathbf{r}_{12}}{\omega r_{12}^2}.
$$

(25)
Note that in obtaining Eq. (25) we have neglected some terms which are of first order in retardation, but are regular. These neglected terms, due to singular terms in wave functions, will lead to contributions in higher powers in $1/p_{12}$.

The leading contribution to the matrix element in the central region come from the singular term Eq. (25), combined with the the first terms (the unit terms, i.e the “$1s$”) in the expansion of the wave functions. The leading contribution in the QF region is [34,35]

$$M_{QF} = N_f \pi \nu \frac{\epsilon \cdot \hat{p}_{12} k \cdot \hat{p}_{12}}{p_{12}^3} \int \bar{\Psi}(0, \mathbf{R}) e^{i \mathbf{p} \cdot \mathbf{R}} d^3 R. \quad (26)$$

Here the factor $k \cdot \hat{p}_{12}/p_{12}$ comes from first order retardation. If one neglects retardation [puts the singular term in Eq. (25) identically to zero] the leading contribution in the central region would be of order $1/p_{12}^2$ (the first nonvanishing k-dependent contribution involves three more powers in r_{12}), i.e. of the same order as the contribution from the triple coalescence.

In V-form the electron–photon interaction operator, Eq. (3), written in terms of r_{12}, \mathbf{R} coordinates, expanded around the coalescence $r_{12} = 0$ and taken to first order in retardation, is

$$I^2_V = -i[\epsilon \cdot \nabla_R + (k \cdot r_{12})\epsilon \cdot \nabla_{12}]. \quad (27)$$

As explained earlier in connection with the e–N coalescence contributions (single ionization and double ionization SO contribution), the plane wave approximation for the fast electrons gives the correct leading contribution for s–states (but not for higher states). We show here that when the e–e coalescence is important, as in the central region, such an approximate wave functions may give spurious contributions in the same order as the leading contribution Eq. (26). These spurious contributions can be present in this order even when retardation is neglected.

By substituting I^2_V into the matrix element Eq. (23), the term $k \cdot r_{12} \epsilon \cdot \nabla_{12}$, together with the first singular term from the initial state “νr_{12}” and the regular term “1” from the final state, give the leading contribution Eq. (26). However, there are two terms (one term the product of $\epsilon \cdot \nabla_R$ from I_V, the singular term “g” from final state, and the unit term from the
initial state, and the other term the product of $\epsilon \cdot \nabla_R$ from I_V, the unit term “1” from final state, and the singular term from the initial state “νr_{12}” of the order $\epsilon \cdot \mathbf{P}/p_{12}^4$, which do not contain retardation, and which cancel with each other. Therefore if an approximate initial state wave function or an approximate final state wave function is used, a term proportional to $\epsilon \cdot \mathbf{P}/p_{12}^4$ may appear, resulting in a spurious structure in the central region even in dipole approximation. [For example, such structure in dipole approximation was obtained in [40] using approximate initial state wave functions with V-form. Other examples of appearance of spurious contributions in the central region are discussed in [41]]. This may happen, for example, if uncorrelated final state wave functions are used, or if the initial state wave function does not have proper expansion around the coalescence (i.e. if it does not satisfy the e–e Kato cusp condition).

The QF and the SO contributions are similar in the following sense. Each of them corresponds to an AFT in just one large momentum. Each is associated with a corresponding singularity through a fast oscillating term from the plane wave parts of the final state wave function. These are the only such contributions, since the potential only has these two singularities. The difference between the QF and SO mechanisms is in the different pair of particles involved in the coalescence.

VII. THE FINAL–STATE–INTERACTION CONTRIBUTION TO DOUBLE IONIZATION AND THE e–N COALESCEENCE

While the end points and the center of the spectrum, dominant in determining the total cross section, are due respectively to the shake–off and the quasi–free mechanisms, the main part of the spectrum is determined in another way. As the momentum of the second electron increases, the probability amplitude to have this electron produced through the shake–off mechanism (which is, as we discussed, equivalent to the sudden approximation, which neglects final state interaction), with momentum $p_2 \gg a$, decreases with $1/p_2^4$, as discussed in Sec. V, Eq. (21). In this situation, however, the influence of the final state interaction
becomes important, and it dominates over the shake-off mechanism. [This intermediate
region of the spectrum is called the final-state-interaction (FSI) region.] We can see this
already starting from Eq. (17), Eq. (18), and Eq. (19), derived with the assumption that
$p_2 \ll p_1$. [In fact we just need to consider the correlation factor Eq. (19) of the matrix
element, which contains the final state interaction and all p_2 dependence, which is all that
we need for the FSI region, except that has made the assumption $p_2 \ll p_1$.] We increase p_2
and look for the dominant kinematics in the region of the spectrum $p_1 \gg p_2 \gg a$. Note that
due to the assumption $p_2 \ll p_1$ (which we will later remove) we are looking only a small
part of the spectrum, next to the edge. But this helps us see how SO evolves into the FSI
region. We will then remove the assumption $p_2 \ll p_1$ and will look at the rest of the FSI
region, in which p_1 and p_2 are of comparable size.

We first look at what happens to our SO result Eq. (18) and Eq. (19) as the momentum of
the slower electron also becomes large, i.e. when $p_1 \gg p_2 \gg a$. We need to look only at the
correlation factor Eq. (19), which we now write making explicit the plane wave oscillating
term, [26]

$$M_{cor} = \frac{\sqrt{2}}{N_f} \int e^{-i p_2 \cdot r_2} \Phi_{p_2}^{(-)}(r_2) D_{p_1,p_2}(0,r_2) \Psi_t(0,r_2) d^3r_2.$$ \hspace{1cm} (28)

In the limit $p_1 \gg p_2 \gg a$ the fast oscillating plane wave term $\exp(-i p_2 \cdot r_2)$, unless modified
by oscillating terms from $\Phi_{p_2} D_{p_1,p_2}$, results in $1/p_2^{n+3}$ powers for singular terms containing
r_2^n, and it therefore gives at most a $1/p_2^4$ contribution. [One would obtain the same result
taking $p_2 \gg a$ starting from the SO limit Eq. (20).] The powers come from the $r_2 = 0$
singularity. In order to find terms which are larger than $1/p_2^4$, one needs to look at the
oscillating terms in $\Phi_{p_2} D_{p_1,p_2}$ which can modify the the fast oscillating plane wave term so
that it becomes a smooth function at least for some kinematics. Since $\exp(-i p_2 \cdot r_2) \Phi_{p_2}$
is fast oscillating everywhere for $p_2 \gg a$ the needed modification can come only from fast
oscillations of D_{p_1,p_2}. We can represent these oscillations accurate to first order in the
e-e interaction by employing the 3C model, as demonstrated in Appendix B. In the 3C
model the fast oscillations of the function D_{p_1,p_2} occur for large values of its argument,
\(\mathbf{p}_{12} \cdot \mathbf{r}_{12} + p_{12} r_{12} \gg 1 \), (see Appendix B). In the asymptotic region [accurate to the leading order in \(\nu = m a / 2 \) (e–e interaction)], neglecting terms which decrease faster than \(1/r_{12} \), we have

\[
D_{p_{12}, nlm}(\mathbf{r}_1, \mathbf{r}_2) = e^{-i \frac{\nu}{p_{12}} \ln(p_{12} r_{12} + \mathbf{p}_{12} \cdot \mathbf{r}_{12})} + \frac{f_{p_{12}}(\mathbf{p}_{12} \cdot \hat{\mathbf{r}}_{12})}{r_{12}} e^{-i \frac{\nu}{p_{12}} \ln(p_{12} r_{12} + \mathbf{p}_{12} \cdot \mathbf{r}_{12}) + i \frac{\nu}{\pi} \ln(2 p_{12} r_{12})},
\]

(29)

where \(f_{p_{12}} \) is the e–e scattering amplitude

\[
f_{p_{12}}(\mathbf{p}_{12} \cdot \hat{\mathbf{r}}_{12}) = \frac{\nu}{p_{12}^2 (1 + \mathbf{p}_{12} \cdot \hat{\mathbf{r}}_{12})} e^{i \frac{\nu}{p_{12}} \ln(\frac{1}{2} (1 + \mathbf{p}_{12} \cdot \mathbf{r}_{12}) + i \pi - 2 \eta_0)},
\]

(30)

and where \(\eta_0 = \arg \Gamma(1 + i \nu / p_{12}) \).

In the configuration regions in which the function \(D_{p_{1,2}} \) is not asymptotic the final state interaction gives just a correction to the SO contribution, which is small. Restricting to integration within the asymptotic region for \(D_{p_{1,2}} \), and inserting Eq. (29) into Eq. (28), we obtain

\[
M_{\text{corr}} = \frac{\sqrt{2}}{N_i} \int e^{-ip_{2} \cdot \mathbf{r}_2} \Phi_{p_{2}}(\mathbf{r}_2) \left[e^{i \frac{\nu}{p_{12}} \ln(p_{12} r_{12} - \mathbf{p}_{12} \cdot \mathbf{r}_{2})} + \frac{f_{p_{2}}(\mathbf{p}_{2} \cdot \hat{\mathbf{r}}_{2})}{r_2} e^{i \frac{\nu}{p_{12}} \ln(p_{12} r_{12} - \mathbf{p}_{12} \cdot \mathbf{r}_{2}) + i \frac{\nu}{\pi} \ln(2 p_{12} r_{12})} \right] \Psi_i(0, \mathbf{r}_2) d^3 r_2.
\]

(31)

The first term in the parenthesis, involving only a logarithmic phase, is slowly oscillating and it therefore will not modify the fast oscillating plane wave \(\exp(-i \mathbf{p}_2 \cdot \mathbf{r}_2) \), hence only giving small contributions. Note also that spherical waves from \(\Phi_{p_{2}} \) together with spherical waves from \(D_{p_{1,2}} \) give already a \(1/p_{1,2}^4 \) factor, due to the \(1/p_{1,2}^4 \) factor contained in both spherical waves; we therefore do not consider such oscillating terms. We proceed, keeping only the second term. The integration only includes the regions in which the function \(D \) has asymptotic behavior, and these regions are defined by the requirement that \(p_{2} \mathbf{r}_{2} (1 - \mathbf{p}_{2} \cdot \hat{\mathbf{r}}_{2}) \gg 1 \). We will calculate just the leading contribution, to determine its \(1/p_{2} \) dependence, and therefore we approximate \(\Phi_{p_{2}}(\mathbf{r}_2) \approx 1/(2\pi)^3 \). We are calculating

\[
M_{\text{corr}} = \frac{\sqrt{2}}{(2\pi)^3 N_i} \int e^{-i \mathbf{p}_2 \cdot \mathbf{r}_2} + i p_{12} \mathbf{r}_2 + i \frac{\nu}{p_{12}} \ln(2 p_{12} r_{12}) f_{p_{12}}(\mathbf{p}_{12} \cdot \hat{\mathbf{r}}_{2}) \frac{\Psi_i(0, \mathbf{r}_2)}{r_2} d^3 r_2,
\]

(32)
where \(\mathbf{P} = \mathbf{p}_1 + \mathbf{p}_2 \). Note the modified oscillating term. In the asymptotic region the e–e scattering function \(f_{p_2}(-\mathbf{p}_{12} \cdot \mathbf{r}_2) \), given by Eq. (30), is a smooth function, \(i.e. \) in the asymptotic region it is away from its singularity at \(\mathbf{p}_{12} \cdot \mathbf{r}_2 = 1 \).

We now perform the radial integration over \(r_2 \), \(i.e. \) we are calculating

\[
\rho(\mathbf{P} \cdot \mathbf{r}_2, p_{12}) = \int e^{-i\mathbf{P} \cdot \mathbf{r}_2 + ip_{12}r_2} \frac{1}{r_2} \Psi(0, r_2)r_2^2 dr_2, \tag{33}
\]

where we have dropped the slowly oscillating logarithmic term, which only contributes with additional powers in \(\nu / p_{12} \). For large momenta (both \(p_1 \gg a \) and \(p_2 \gg a \)) the function \(\rho(\mathbf{P} \cdot \mathbf{r}_2, p_{12}) \) has a maximum at \(\mathbf{P} \cdot \mathbf{r}_2 / 2 - p_{12} = 0 \).

In order to get some impression of the behavior of this function we can use some realistic examples for \(\Psi(0, r_2) \). If we use a model (Hylleraas) in which \(\Psi(0, r_2) \) can be expressed, to a good accuracy, as \(\Psi(0, r_2) = C \exp(-\lambda r_2) [42] [\lambda \simeq m \alpha (Z - 0.53)] \), we get

\[
\rho(\mathbf{P} \cdot \mathbf{r}_2, p_{12}) = \frac{C}{(\lambda - ip_{12} + i\mathbf{P} \cdot \mathbf{r}_2)^2}, \tag{34}
\]

which has the kind of behavior we have discussed. We are now left with the angular integration in Eq. (32) over angles which do not include singularity of \(f_{p_{12}}(-\mathbf{p}_{12} \cdot \mathbf{r}_2) \), so that this function is slowly changing. Using a peaking approximation we can make the following estimate for the integral in Eq. (32). For arbitrary kinematics, in the limit \(p_1 \gg a \) and \(p_2 \gg a \), [we write \(M_{\text{corr}} = \sqrt{2} I/(2\pi^3 N^C_i) \)],

\[
|I| \leq |f_{p_{12}}(-\mathbf{p}_{12} \cdot \hat{\mathbf{r}}_2^{\text{max}}) \int \mu(\mathbf{P} \cdot \mathbf{r}_2, p_{12}) d\Omega_2| = |f_{p_{12}}(-\mathbf{p}_{12} \cdot \hat{\mathbf{r}}_2^{\text{max}}) \frac{4\pi C}{(\lambda - ip_{12})^2 + (\hat{\mathbf{P}} - \hat{\mathbf{r}}_2^{\text{max}})^2}|, \tag{35}
\]

where \(\hat{\mathbf{r}}_2^{\text{max}} \) denotes that direction, among all directions satisfying \(\mathbf{P} \cdot \hat{\mathbf{r}}_2 / 2 - p_{12} = 0 \), in which \(f_{p_{12}} \) has maximal value.

As illustrated by Eq. (35), in general there will be two additional powers in \(1 / p_{\text{large}} \), except when the kinematics is such that \(P / 2 = p_{12} \). In such a case \(\hat{\mathbf{r}}_2^{\text{max}} = \hat{\mathbf{P}} \) and we obtain that the dominant contribution to \(M_{\text{corr}} \) for the kinematics \(P / 2 = p_{12} \), which gives the leading contribution to the spectrum, for \(p_1 \gg p_2 \gg a \), is

\[
M_{\text{corr}} = \frac{\sqrt{2}}{(2\pi^3 N^C_i)} f_{p_{12}}(-\mathbf{p}_{12} \cdot \hat{\mathbf{P}}) \mu(p_{12}, \Delta), \tag{36}
\]

34
where

\[
\mu(p_{12}, \Delta) = \int \rho(P \cdot \mathbf{r}_2, p_{12}) d\Omega_2 \\
= \frac{2\pi i}{p_{12}} \int e^{i\Delta r_2} \Psi(0, r_2) dr_2,
\]

and where \(\Delta = p_{12} - \frac{P}{2}\). In obtaining Eq. (37) the angular integration was performed using the fact that \(\Psi(0, r_2)\) is angle independent for the ground state; only the leading order in \(1/p_{12}\) is being kept.

The correlation part of the matrix element, in the dominant kinematics, factorizes further into a final state e–e interaction part (represented by the free e–e scattering amplitude) and an initial state correlation represented by the function \(\mu(p_{12}, \Delta)\). This means that the dominant contribution to the matrix element for photoabsorption in the limit \(p_1 \gg p_2 \gg a\), in the dominant kinematics \((P/2 = p_{12}\), which is equivalent to saying that \(p_1\) is orthogonal to \(p_2\)) is

\[
M_{FSI} = \frac{\sqrt{2}}{(2\pi)^3 N_f^2} f_{p_{12}}^*(\mathbf{p}_{12} \cdot \mathbf{P}) \mu(p_{12}, \Delta) M_{abs},
\]

where \(M_{abs}\) is the absorption part given by Eq. (18). The result Eq. (38) has been obtained for the situation \(p_1 \gg p_2 \gg a\), in which exchange can be neglected in the leading order. In a more symmetric situation the same factorization as in Eq. (38) is obtained [36], as we also show below, except that the e–e scattering is represented by the full e–e scattering amplitude for electrons in the spin singlet state, which is \(f_{p_{12}}(\mathbf{p}_{12} \cdot \mathbf{P}) + f_{p_{12}}(\mathbf{p}_{12} \cdot \mathbf{P})\).

We now remove the assumption \(p_2 \ll p_1\). We demonstrate that in the limit \(p_1 \gg a\) and \(p_2 \gg a\), but with no restrictions on the relative size of \(p_1\) and \(p_2\), the dominant contribution to the spectrum (but away from the quasi–free region, \(p_1 \simeq p_2\)) comes from the kinematics in which the outgoing electrons momenta are perpendicular (which implies that both \(P\) and \(p_{12}\) is large), and we show that the leading contribution in that kinematics is

\[
M_{FSI} = \frac{\sqrt{2}}{(2\pi)^3 N_f^2} [f_{p_{12}}^*(\mathbf{p}_{12} \cdot \mathbf{P}) + f_{p_{12}}(\mathbf{p}_{12} \cdot \mathbf{P})] \mu(p_{12}, \Delta) M_{abs}.
\]

The arguments follow exactly those leading to Eq. (38). However, in obtaining Eq. (38) we have already started from a partitioning in the vicinity of one singularity (the singularity
connected with the momentum of the faster electron. Now we just need to clarify the roles of the singularities \(r_1 = 0 \) and \(r_2 = 0 \).

We are looking at the regions where both \(\mathbf{p}_1 \) and \(\mathbf{p}_2 \) are large but also \(\mathbf{p}_{12} \) and \(\mathbf{P} \) are large. We substitute the asymptotic expansion for the final state wave function and the asymptotic behavior of the final state e\(\rightarrow\)e interaction Eq. (29) into Eq. (2) (with \(\lambda \equiv \mathbf{p}_2 \)). We use the argument from Sec. IV that without modification of the plane wave oscillations the intermediate region is determined by the triple coalescence, and that such modification comes from the e\(\rightarrow\)e interaction term. We obtain for the leading contribution [26]

\[
M_{FSI} = -\frac{\sqrt{2}}{(2\pi)^3} \int e^{-i\mathbf{r}_1 \cdot \mathbf{r}_2} \mathcal{I}_{\mathbf{p}_{12}}(\mathbf{r}_{12}) \mathcal{I}_{\mathbf{p}_{12}}(\mathbf{p}_{12} \cdot \mathbf{r}_{12}) \frac{f_{\mathbf{p}_{12}}(\mathbf{p}_{12} \cdot \mathbf{r}_{12})}{r_{12}} \times [I^{1e}(\mathbf{r}_1) + I^{1e}(\mathbf{r}_2)] \Psi(\mathbf{r}_1, \mathbf{r}_2) d^3r_1 d^3r_2, \tag{40}
\]

where we have written the plane wave oscillating factors in terms of \(\mathbf{P} \) and \(\mathbf{p}_{12} \) for convenience for combining them with the oscillating terms of the scattering wave. We have dropped the logarithmic phases, which do not contribute in the leading order. Note that the integral containing the e\(\rightarrow\)\(\gamma\) interaction \(I(\mathbf{r}_2) \) can be obtained from the integral containing \(I(\mathbf{r}_1) \) by interchanging \(\mathbf{p}_1 \) and \(\mathbf{p}_2 \). We explicitly show only the contributions containing \(I(\mathbf{r}_1) \). For the e\(\rightarrow\)\(\gamma\) interaction we are assuming V-form or A-form, since we are neglecting e\(\rightarrow\)n interaction in the final state (we are not treating the final state e\(\rightarrow\)n coalescence correctly), and in L-form this will lead to spurious contributions as discussed in Sec. V.

The evaluation of the leading contribution follows the procedure of the partitioning around the e\(\rightarrow\)n coalescence. The leading contributions to Eq. (40) come from two regions: 1) a region in which \(r_1 \) is small and \(r_2 \) is large (\(r_1 \simeq 1/\mathbf{p}_{12} \), \(r_2 \simeq 1/\mathbf{p}_2 \)), and 2) a region in which \(r_2 \) is small and \(r_1 \) is large. These two regions, which we denote \((0, r_2)\) and \((r_1, 0)\), are disconnected, and we can simply add the contributions in the two regions to get the leading contribution to \(M_{FSI} \).

\[
M_{FSI} = \frac{\sqrt{2}}{(2\pi)^3} \mathcal{I}_{\mathbf{p}}(\mathbf{r}_2) + \mathcal{I}_{\mathbf{p}_2}(\mathbf{r}_1, 0) + (\mathbf{p}_1 \leftrightarrow \mathbf{p}_2), \tag{41}
\]

where the contribution from the \(r_1 = 0 \) singularity is
\[I_{(0, r_2)} = \int e^{-i \frac{P}{r_2}} r_1 - i p_{12} r_1 \cos \theta_{12} - i \frac{P}{r_2} r_2 + i p_{12} r_2 I(r_1) \frac{f_{p_{12}}^* (-\hat{P}_{12} \cdot \hat{r}_2)}{r_2} \times \Psi_i^C (r_1) \Psi(0, r_2) d^3 r_1 d^3 r_2, \]
(42)

and the contribution from the \(r_2 = 0 \) singularity is

\[I_{(r_1, 0)} = \int e^{-i \frac{P}{r_2}} r_2 - i p_{12} r_2 \cos \theta_{12} - i \frac{P}{r_2} r_1 + i p_{12} r_1 I(r_1) \frac{f_{p_{12}}^* (\hat{P}_{12} \cdot \hat{r}_1)}{r_1} \times \Psi_i^C (r_2) \Psi(r_1, 0) d^3 r_1 d^3 r_2, \]
(43)

and where \(\nu = m \alpha/2 \). The integrations in these expressions are restricted to the regions in which the e–e interaction is in the asymptotic region. Note that the expansion of \(r_{12} \) around \(r_1 = 0 \) (the same is true for \(r_2 = 0 \)) gives two terms which we should keep, i.e. at the \(r_1 = 0 \) singularity the two terms are \(p_{12} r_{12} = p_{12} r_2 - p_{12} r_1 \cos \theta_{12} + O(r_1/r_2) \cdots \), where \(\theta_{12} \) is the angle between \(r_1 \) and \(r_2 \). We can not neglect the term \(p_{12} r_1 \cos \theta_{12} \) since \(P r_1 \) and \(p_{12} r_1 \) are of the same magnitude.

We can now perform the analysis which led to Eq. (38). Terms like \(p_{12} r_1 \cos \theta_{12} \) in the phase of the oscillating factor

\[e^{-i \frac{P}{r_2}} r_1 - i p_{12} r_1 \cos \theta_{12}, \]
(44)

which we did not have in the situation when \(p_1 \gg p_2 \gg a \), make no change in the argument. In the dominant region (\(P/2 = p_{12} \)) they give a phase \(P \cdot r_1/2 \), which together with the already existing phase term \(P \cdot r_1/2 \) gives the correct phase \(P \cdot r_1 \) with the total absorption momentum \([-i \frac{P}{2} \cdot r_1 - i p_{12} r_1 \cos \theta_{12} = -i P \cdot r_1] \). Namely after photon absorption one electron has the whole total momentum \(P \), which is then distributed between electrons through e–e scattering. In the dominant kinematics (\(P/2 = p_{12} \)), which can be established as in the asymmetric situation, and which is the same for both \(I_{(0, r_2)} \) and \(I_{(r_1, 0)} \), we get

\[I_{(0, r_2)} = \int e^{-i \frac{P}{r_2}} r_1 I(r_1) \Psi_i^C (r_1) d^3 r_1 \int e^{-i \frac{P}{r_2}} r_2 + i p_{12} r_2 \frac{f_{p_{12}}^* (-\hat{P}_{12} \cdot \hat{r}_2)}{r_2} \times \Psi(0, r_2) d^3 r_2, \]
(45)

\[I_{(r_1, 0)} = \int e^{-i \frac{P}{r_2}} r_2 \Psi_i^C (r_2) d^3 r_2 \int e^{-i \frac{P}{r_2}} r_1 + i p_{12} r_1 I(r_1) \frac{f_{p_{12}}^* (\hat{P}_{12} \cdot \hat{r}_1)}{r_1} \times \Psi(r_1, 0) d^3 r_1, \]
(46)
Eq. (45) is just the expression we considered in the asymmetric case. The contribution Eq. (46) can be neglected since both integrals appearing in it are of higher order in \(1/p_{\text{large}}\) than the corresponding integrals in Eq. (45).

As discussed here, and in [34–36], a more equal energy sharing between electrons occurs primarily due to the subsequent final state interaction rather than through the shake-off mechanism. The final state interaction mechanism of double ionization can be viewed (like shake-off) as a two-step process. In the first step photoabsorption occurs, as in the case of the shake-off mechanism. But in the second step the fast electron interacts with (scatters off) the second electron (final state correlation), leading to double ionization and establishing a more equal energy sharing between the two electrons. In both the shake-off and the final state interaction mechanisms an electron and the nucleus are involved in photoabsorption. However the double ionization in the shake-off mechanism is a consequence of initial state correlation, while in the final-state interaction mechanism the double ionization is a consequence of final state correlation. In this FSI region the leading contribution is associated with the kinematics in which the two electron momenta are nearly orthogonal to each other. This leading contribution, called the final-state interaction (FSI) contribution, is determined by the e–N coalescence. The matrix element is again a single FT in just one large momentum associated with just one singularity. We should note that the contribution of the final state interaction mechanism to the total cross section for double ionization, at high energies, is negligible in comparison to the contribution of the shake-off mechanism.

As discussed in Sec. IV, the dominant contributions in the three regions of the spectrum are a consequence of the existence of the singularities. There we have shown that the ordinary AFT (of a function with the same singularities as in the photoabsorption matrix element) in the intermediate region, away from both the edge region (in which the dominant contribution is determined by the e–N singularity) and the central region (the quasi-free region in which the dominant contribution is determined by the e–e singularity), is determined by the triple singularity at \(r_1 = r_2 = 0\), corresponding to a double AFT. However, our matrix element differs from the ordinary AFT in that the plane wave fast oscillating behavior can be modified
due to spherical waves. What matters here is the modification resulting from the final state spherical wave due to the e–e interaction term, which results in a single AFT in a large momentum associated with just one (e–N) singularity, giving a contribution which dominates in the spectrum in comparison to the contribution from the triple coalescence. Within the assumption of a perturbative expansion for the final state two-electron continuum wave function there are no other contributions of the same order as the contribution Eq. (39) in this region of the spectrum.

VIII. GROUND STATE IONIZATION TOTAL CROSS SECTIONS AND DOUBLE TO SINGLE IONIZATION RATIOS \(R_{SO} \) AND \(R \)

The total cross section for single or double ionization in photoabsorption of a high energy photon of momentum \(\mathbf{k} \) by a two electron atom is

\[
\sigma = \frac{(2\pi)^2 \alpha}{m^2 \omega} \sum_{\lambda} \int d^3 \mathbf{p}_1 \frac{1}{2} \sum_{\epsilon} |M|^2 \delta(\omega - |E_B| - \epsilon_1 - \epsilon_\lambda),
\]

(47)

where the nonrelativistic transition matrix element in the lowest order in the photon–electron interaction is given by Eq. (2). The symbol \(\sum_{\lambda} \) means summation over hydrogen–like discrete states \(n \) when single photoionization is considered and means \(\int d^3 \mathbf{p}_2 \) when double photoionization is considered. [Bound states are normalized to unity. The single electron continuum is normalized asymptotically to an amplitude \(1/(2\pi)^{3/2} \) and the two electron continuum is normalized asymptotically on an amplitude \(1/(2\pi)^3 \).]

Substituting Eq. (13) into Eq. (47) we obtain an expression for the single ionization total cross section at high photon energies (but \(\omega \ll \alpha \)), within the 3C model, involving excitations to all subshells. However, since the 3C model neglects terms of the order \(Z (m \alpha)^2 / \rho^2 \), we neglect, for simplicity, all terms from the correlation factor which vanish as \(1/\rho^2 \), i.e. we take only excitations to \(l = 0 \) bound states. Also, we neglect binding energies \(E_n \) of the final state bound electron compared to the kinetic energy of the outgoing electron. Thus, we obtain a common absorption factor for all excitations. This leads to factorization of the
cross section for single ionization of He, and we obtain an expression for the single ionization total cross section at high photon energies (but with $\omega \ll m$)

$$\sigma^+ = \frac{1}{(N_i^C)^2} \left[\sum_n \left| \int \Phi^*_n(r)\Psi_i(r,0)d^3r \right|^2 \right] \sigma^C_{1s}(\omega),$$

(48)

where $\sigma^C_{1s}(\omega)$ is the photoabsorption cross section from the ground state of hydrogen–like He. The cross section $\sigma^C_{1s}(\omega)$ in Eq. (48), resulting from the absorption matrix element Eq. (13), includes both retardation and the slowly converging Stobbe factor.

We now calculate the double ionization total cross sections. This means integration in Eq. (47) over the whole spectrum of final electron energies. But, before doing that, we may consider restricting ourselves to just the SO region, and we define the SO total cross section σ^{++}_{SO}. This is a well defined observable, which has been measured [43] by counting only the events where momentum is transferred to the nucleus (e–N coalescence is involved in photoabsorption). As in single ionization case, we neglect all terms from the correlation factor which vanish as $1/p^2_{large}$, i.e. we take Eq. (20) for the correlation factor. Also, we neglect the kinetic energy of the slow electron, $E_2 \sim a^2/2m$, compared to the kinetic energy of the fast electron. As in single ionization, we obtain a common factor $\sigma^C_{1s}(\omega)$ for all contributing $E_2 \sim a^2/2m$. This leads to factorization of the σ^{++}_{SO} cross section. When calculating the SO double ionization total cross section σ^{++}_{SO} we can simply use Eq. (48), replacing the summation over discrete states n by summation over continuum states. Alternatively (due to the above simplifications), as has been done in Ref. [27], we may employ the completeness relation for the states Φ. We obtain

$$\sigma^{++}_{SO} = \frac{1}{(N_i^C)^2} \left[\int |\Psi_i(r,0)|d^3r - \sum_n \left| \int \Phi^*_n(r)\Psi_i(r,0)d^3r \right|^2 \right] \sigma^C_{1s}(\omega).$$

(49)

Our analysis of SO double ionization and single ionization gave a factorization of the matrix elements into absorption and correlation factors, which leads to a similar factorization of cross sections. This factorization is accurate neglecting terms which vanish as $1/p^2_{large}$. Since the SO double ionization cross section and single ionization cross section have the same factor $\sigma^C_{1s}(\omega)$ (which include retardation and the slowly converging Stobbe factor) at
high energies, it cancels in the ratio. [The cancellation of retardation was demonstrated in numerical calculations [23] which were consistent with the shake-off assumption.] The shake-off ratio $R_{SO} = \sigma_{SO}^{++}/\sigma^+$ therefore involves only the correlation factors. At high energies [27–30,44]

$$R_{SO} = \frac{\int |\Psi_i(r_1, 0)|^2 d^3r_1}{\sum_n |\Phi_n^*(r_1)|\Psi_i(r_1, 0)d^3r_1}|^2 - 1.$$ \hspace{1cm} (50)

The cross sections $\sigma^+, \sigma_{SO}^{++}$ and also the ratio R_{SO} approach their asymptotic forms Eqs. (48–50) faster than $1/p_{large}$ (in fact the 3C model gives an approach as $1/p_{large}^2$). Various numerical calculations [see e.g. [10] and references therein], are consistent with such a conclusion. These calculations agree that, in the case of He, the constant SO ratio, $R_{SO} = 1.67\%$, which can be obtained even in the lowest order Born approximation, is reached within few percent at 5 keV and approaches a constant as $1/p_{large}^2$. In contrast, at such an energy the lowest order Born approximation for cross sections is still more than 25\% away from the correct value (see the discussion of single ionization of He within IPA in [1]) and the error decreases only as $1/p_{large}$. Fast convergence of the ratio is due to cancellations of the Stobbe factors.

The contribution of the FSI region to the total cross section is negligible in the high energy limit. The double ionization cross section in the FSI region obtained from Eq. (39) is [36]

$$\frac{d\sigma^{++}(\omega)}{dE_1} = \kappa \sigma_{1s}^C(\omega) \frac{d\sigma_{ee}^+(\omega, E_1)}{dE_1},$$ \hspace{1cm} (51)

factorized as the product of the cross section $\sigma_{1s}^C(\omega)$ for single photoabsorption (which reflects the mechanism of absorption of the photon) and $d\sigma_{ee}^+(\omega, \epsilon_1)/d\epsilon_1$ the cross sections for single ionization by electron impact [36]

$$\frac{d\sigma_{ee}^+(\omega, E_1)}{dE_1} = \frac{2\pi\alpha^2}{2\omega} \left[\frac{1}{\omega - E_1} + \frac{1}{E_2} \right]^2,$$ \hspace{1cm} (52)

where κ in Eq. (51) is

$$\kappa = \frac{\int |\Psi_i(0, \mathbf{r})|^2 d^3r}{4\pi \int |\Psi_i(0, \mathbf{r})|^2 d^3r}.$$ \hspace{1cm} (53)
By integrating Eq. (51) over the whole energy region, but excluding the SO region (integrate from E_0 to $\omega - E_0$ where E_0 defines the SO region; E_0 is several times $a^2/2m$), in which Eq. (51) is not valid, one obtains

$$\sigma_{FSI}^{++} \simeq \frac{2\pi\alpha^2}{\omega E_0} \sigma_{fs}(\omega),$$

(54)

which shows that the FSI contribution to the total cross section is negligible at high energies ω.

The full total cross section for double ionization σ^{++} includes both the SO and the QF contributions. The matrix element Eq. (2) can be approximated by M_{SO} and by M_{QF} in the two different dominant kinematical regions. The overlap (interference term) of these two contributions is negligible. In fact this interference term is much smaller then the contribution of the final state interaction term, which has also been neglected here. We may therefore proceed following [35], substituting Eq. (26) in Eq. (47) for the He double ionization total cross section ($\lambda = p_2$). We perform the integration over all outgoing electron energy and momenta in order to obtain the σ_{QF}^{++} contribution to the total double ionization cross section. Neglecting the binding energy E_B and the energy of the center of mass of the two electrons $P^2/(4m)$ in comparison to their energy p^2/m in the center of mass frame, we obtain the leading contribution σ_{QF}^{++} to the total cross section for double ionization by photoabsorption through the quasi-free mechanism

$$\sigma_{QF}^{++} = \frac{2^9\pi^2 m \alpha^3 \omega}{15(m\omega)^{7/2}} \int |\Psi_i(r_1, r_1)|^2 d^3r_1.$$

(55)

The dominant contributions to the total cross section σ^{++} for double ionization of the ground state of a He-like atom by photoabsorption, at high but nonrelativistic energies, are given by summing Eq. (49) and Eq. (55).

Taking the single ionization total cross section to the same order (or to all orders) in retardation (k) as in calculating σ_{QF}^{++}, the ratio $R = \sigma^{++}/\sigma^+$ is obtained as

$$R = R_{SO} + C Z \frac{\omega}{m},$$

(56)
for \(\omega \ll m \), where the constant \(R_{SO} \) is the shake–off result for the ratio and

\[
C_Z = \frac{8\sqrt{2}}{5Z^2} \frac{\int |\Psi_i(r_1, r_1)|^2 d^3r_1}{\sum_n |\Phi_n(r_1)\Psi_i(r_1, 0) d^3r_1|^2}.
\] (57)

Here \(m \) is the electron mass, \(\Phi_n(r_1) \) is a bound state hydrogen–like electron wave function (in a potential of charge \(Z \)), and the summation is over all bound states. We may estimate the magnitude of the constant \(C_Z \) by using approximate ground state wave functions in Eq.(57). For the function \(\Psi_i(r_1, r_2) = \exp[-Z(r_1 + r_2) + |r_1 - r_2|/2] \), (here we use atomic units) [22], both the e–e and e–N Kato conditions are exactly fulfilled. Then Eq. (57) gives \(C_Z = [(2Z - 1)/(2Z)]^3\sqrt{2}/(5Z^2) \). (The binding energy of He given by this simple wave function is 77.7 eV.) In the case of He, this gives \(C_Z = 0.030 \). Since for He, \(R_{SO} = 0.0167 \), this means that at \(\omega = 15 \) keV the ratio \(R_P = 0.0176 \), which is about 5% above the constant shake–off ratio [45]. In this energy region the deviation will increase linearly with \(\omega \).

IX. CONCLUSIONS

We have described within a unified nonrelativistic approach single and double photoionization of two electron atoms by photoabsorption at high photon energies \(\omega \) (but still \(\omega \ll m \)). We have demonstrated that high energy ionization by photoabsorption can be understood in terms of the singularities of the many–body Hamiltonian. Our discussion was not dependent on the choice of the form [length (L), velocity (V), acceleration (A) etc.] of the photoionization matrix element.

Since photoabsorption at high photon energies requires at least one large outgoing electron momentum, we have argued that the analysis is equivalent to the analysis of the asymptotics of Fourier transforms. Based on Fourier transform theory, we have shown that a slow asymptotic decrease for large momentum \(p \), such as \(1/p^n \) is connected with the singularities of the e–N and e–e Coulomb potentials. We have demonstrated how this slow asymptotic decrease can be obtained by writing the wave functions and interactions in terms of simpler functions (plus remainders whose contributions decrease faster) around singularities.
Our approach clarifies which singularities need to be considered for dominant contributions and demonstrates that this is determined by the kinematics of the outgoing electron momenta. With this approach we can identify the dominant terms, and avoid omitting any of them, and we can also avoid the uncontrolled introduction of spurious contributions. We have illustrated how both of these problems have arisen in the use of approximate wave functions.

We have applied our approach to study the high energy total cross section for single ionization and the total cross section and spectrum for double ionization of the ground state of a two-electron atom. We have demonstrated that the approach, as well as the final results, are gauge and form independent. However the dependence of the final results on the quality of initial and final state wave functions varies with gauge and form. We have found that acceleration form, which places the singularities of the Hamiltonian in the e–γ interaction, has the least requirement on the quality of wave functions at the singularity, in all situations considered. In the case of total cross sections for single ionization and for the shake–off limit for the double ionization of the ground state, acceleration form requires only the proper normalization of the initial state at the e–N singularities (which are 3-dimensional manifolds, not just points). In contrast, velocity form requires knowledge of both normalization and slope at the singularities, while length form requires even more detailed knowledge of the ground state wave function at the singularities.

Within our unified approach we have explained the dominant contributions to the total cross sections (for single and double ionization) and the dominant contributions to the double ionization spectrum, as a FT asymptotic in a single large momentum (dependent on the process and the region of the spectrum). These dominant contributions are connected, through AFT, with either the e–N singularity or the e–e singularity. The asymptotic Fourier transform results are modified by Coulombic interactions. We have included these modifications, for the cases of single ionization and double ionization in the shake–off region at high energies, and in this way we have obtained rapid convergence of the cross sections with increasing energy. This has allowed us to discuss also the convergence of ratios of cross...
sections. We have discussed the importance of final state e–e and e–N interaction. We have discussed the importance of retardation corrections as well as the cancellation of retardation contributions in the shake–off double to single ratio.

ACKNOWLEDGMENTS

This work has been supported by the Croatian Ministry of Science under Grant No. 00980205 and by the National Science Foundation under Grant No. PHY9970293. T. S. and E. G. D. are grateful for the hospitality of the Department of Physics and Astronomy at University of Pittsburgh during their visits. We also wish to acknowledge helpful discussion with K. Pisk, D. Kekez, J. Burgdörfer and M. Donder.

APPENDIX A: FORM DEPENDENCE OF THE MATRIX ELEMENT IN THE SHAKE REGION

Here we discuss the form dependence of the matrix element for ionization of a two–electron atom in the region where one electron takes almost all the photon energy while the other just shakes (either shakes up or shakes off). The discussion is valid for both single ionization with excitation and for the SO region of double ionization. In particular we consider the exchange part of the matrix element M_{ex}, which can be a source of spurious contributions which dominate the contribution from the direct terms discussed in Sec. III and Sec. V, when approximate functions are used. We also show that an exact initial state wave function with uncorrelated Coulombic final state wave functions gives an accurate high energy result in the shake regions, regardless of the form used.

The exchange term is

$$M_{ex}^+ = \sqrt{2} \int e^{-ip_1 \cdot r_1} \Phi_p^{(-)\ast}(r_1) \Psi_\lambda^\ast(r_2) D_{p_1,\lambda}(r_1, r_2) I^{le}(r_2) r_1 \Psi_i(r_1, r_2) d^3r_1 d^3r_2,$$

where λ denotes the quantum numbers of the remaining bound electron in the case of single ionization, or it denotes the momentum p_2 of the other electron in the case of double
ionization. According to the AFT theorem, the dominant contributions to this part of the matrix element, at high energies, come from singularities. The fast oscillating terms come from the plane wave, and in some configuration regions also from the e–e interaction term Eq. (29) modifying the plane wave oscillating term. While the plane wave oscillating term connects the dominant contribution with the \(r_1 = 0 \) singularity the oscillating term from the e–e interaction can modify these fast oscillations in such a way to give additional contributions from the \(r_2 = 0 \) singularity.

Since the modification of the plane wave, due to the e–e interaction, come with two additional powers in \(1/p^2 \) [see Eq. (30)] such contribution would not modify our result Eq. (10). For the discussion of the final state interaction modification of the plane wave oscillating term, see Sec. VII. We here discuss the form dependence of the contributions from the plane wave oscillating term \((r_1 = 0 \) singularity) to Eq. (A1). This is of interest because contributions from the \(r_1 = 0 \) singularity to the exchange term with approximate wave functions (which do not satisfy Kato condition, and which have been used in some calculations of photoabsorption) can lead to spurious contributions.

The leading contributions from the \(r_1 = 0 \) singularity to the exchange terms can be obtained by characterizing wave functions near the singularity. We will show that if one uses an approximate initial state wave function which does not satisfy the Kato cusp condition, then one can get an erroneous leading order result. We suppose that initial state near \(r_1 = 0 \) is \(\Psi_i(r_1, r_2) = \Psi_i(0, r_2)(1 - a' r_1) Y_0^0(\hat{r}_1) + O(r_1^2; \hat{r}_1, r_2) \) where \(a' \neq a = mZ\alpha \) [see Eq. (8) for the partitioning and characterization of exact wave function near \(r_1 = 0 \)]. For the final state we take an equivalent partitioning in terms of Coulombic functions and explicitly keep only the leading terms. As shown in [1] this means that continuum Coulombic functions can be written as

\[
\Psi_p^(-)(r) = N_p e^{ip\cdot r} \left[1 - i \frac{a}{p} g(-)[i(p r + p \cdot r)] + O \left(\frac{1}{p^2} \right) \right],
\]

where

\[
g(-)(i\xi) = -\frac{1}{2\pi i} \int_\Gamma e^{-i\xi \ln(t^{-1})} \frac{dt}{t} = \int_0^1 \left[e^{-i\xi t} - 1 \right] \frac{dt}{t}.
\]
The contour Γ is a counterclockwise oriented closed contour encircling the cut $[0, 1]$. As discussed in [1] the term containing the function $g^{(-)}(i\xi)$, Eq. (A3), determines all contributions of order a/p to the full Coulombic wave function for $pr \sim 1$, and also to the full three particle wave function for $pr \sim 1$ (where, in the three particle case, p is the relative momentum of the two particles and r the interparticle distance of the two particles involved in the coalescence).

We obtain

$$M_{ex}^{+} = \sqrt{2}N_f \int e^{-(r_1 + ip_1 \cdot r_1)} \left(1 + \frac{a}{p_1} g^{(-)}[i(p_1 r_1 + p_1 \cdot r_1)] + O\left(\frac{1}{p_1^2}\right) \right) \Psi_{nm}(r_2)$$

$$\times \left[1 - \frac{m\alpha}{p_1} g^{(-)} \left[\frac{i}{2} (p_1 r_2 - p_1 \cdot r_2) \right] + O\left(\frac{1}{p_1^2}\right) \right]$$

$$\times J^{1e}(r_2) \Psi(0, r_2) (1 - d r_1 + O(r_2) d^3 r_1 d^3 r_2). \quad (A4)$$

The leading contributions to the matrix element at high energies are determined by the leading singular terms in the variable r_1. Following the procedure explained in [1] we obtain powers $1/p_1^{n+3}$ from singular terms involving powers r_1^n in Eq. (A4), when we integrate over r_1.

In all forms the powers in $1/p_1$ of Eq. (A4) are determined by the p_1 dependence of the interaction term [see Eq. (4), in A–form the interaction term contains the power $1/\omega \sim 1/p_1^2$, in V–form it contains no powers, and in L–form it contains $\omega \sim p_1^2$] and the leading power from the integral

$$\int e^{-(r_1 + ip_1 \cdot r_1)} \left(1 + \frac{a}{p_1} g^{(-)}[i(p_1 r_1 + p_1 \cdot r_1)] + O\left(\frac{1}{p_1^2}\right) \right) \left(1 + d r_1 + O(r_1^2) d^3 r_1 \right) \sim (a - a') \frac{1}{p_1^3}. \quad (A5)$$

This spurious contribution, arising in the exchange term from asymmetric description of the e–N singularity ($a' \neq a$) appears in all forms, but in A–form it is of the order $1/p_1^6$, in V–form it is of the order $1/p_1^4$, and in the L–form it is of the order $1/p_1^2$. In L–form this spurious contribution would be the leading contribution to the matrix element. With wave functions which satisfy the e–N Kato cusp condition these contributions, however, cancel and in fact leave in A–form a $1/p_1^7$ power contribution from the exchange term, in V form

47
a $1/p_1^4$ power, and in L-form a $1/p_1^3$ power, at high energies. Therefore the contribution of the exchange term is manifestly of higher order in A– and V-form while in L-form it is of the same order as the leading contribution for ionization with excitation into s–states, $1/p_1^3$. Even this $1/p_1^3$ contribution is obviously a spurious contribution which must vanish. In order to show this explicitly one needs more detailed knowledge of the wave functions at the coalescence. However, as we show now, neglecting final state interaction and assuming exact initial state wave function, we get no spurious terms of the order $1/p_1^3$ (i.e. of the same order as the dominant term) when considering ionization with excitation into a bound s–state, i.e. we need no final state e–e interaction even in L–form. An exact initial state wave function with uncorrelated Coulombic final state wave functions gives an accurate high energy result in the shake regions.

We assume that the initial state is exact and that final states are uncorrelated Coulombic states with the correct e–N singularity. As we have shown above, the V-form result for ground state ionization does not depend on final state e–e interaction. Therefore we may analyze the behavior of the difference between the approximate V-form and L-form matrix elements when final state interaction is neglected. If the difference vanishes we can conclude that L–form result also does not depend on final state interaction. This difference can be obtained by using the relation $p_1 + p_2 = im[H,(r_1 + r_2)]$, where H is the exact nonrelativistic Hamiltonian for a two–electron atom. We now get

$$
\Delta M_S = M_S^V - M_S^L = \int e^{-i p_1 \cdot r_1} \phi_{p_1}^{(-)}(r_1) \Psi_{p_2}(r_2) \frac{\alpha}{r_{12}} [e \cdot r_1 + e \cdot r_2] \Psi_i(r_1, r_2). \quad (A6)
$$

Due to the fact that the function $1/r_{12}$, as well as $e \cdot r_1$, are regular at $r_1 = 0$ for all $r_2 \neq 0$, the e–N singularity which determines the leading contributions to ΔM_S comes from the initial and final state wave functions. As in the single ionization case, the leading singular power is r_1 which would result in a leading contribution to ΔM_S of order $1/p_1^4$. This would be sufficient for showing that the difference decreases faster than the matrix element (which decreases as $1/p_1^3$), but in fact such terms cancel and the leading contribution to ΔM_S is of order $1/p_1^2$. Therefore M^V and M^L are the same at high energies even with approximate
uncorrelated Coulombic final state wave functions (which have the correct e–N singularity).

APPENDIX B: THE 3C FUNCTION

Here we argue that the 3C function, used in our discussions, is accurate neglecting terms of the order \(Z(m\alpha)^2/E_f\) where \(E_f \simeq p_{\text{large}}^2/2m\) is total energy of the two electrons in the final state, and that the 3C function contains accurately terms of the order \(Zm\alpha/p_{\text{large}}\) in the e–N interaction and terms of the order \(m\alpha/p_{\text{large}}\) in the e–e interaction. With such accuracy of the C3 functions we obtained photoabsorption matrix elements, determining spectrum of double ionization, accurate neglecting terms of order \(1/p_{\text{large}}^2\).

We write the exact solution of the Schrödinger equation, describing two electrons in the final state with momenta \(\mathbf{p}_1\) and \(\mathbf{p}_2\), in the forms

\[
\Psi_f(\mathbf{r}_1, \mathbf{r}_2) = \Psi_p^{(-)}(\mathbf{r}_1)\Psi_p^{(-)}(\mathbf{r}_2)D_{\mathbf{p}_1, \mathbf{p}_2}(\mathbf{r}_1, \mathbf{r}_2) = e^{i(\mathbf{p}_1 \cdot \mathbf{r}_1 + \mathbf{p}_2 \cdot \mathbf{r}_2)}\Phi_p^{(-)}(\mathbf{r}_1)\Phi_p^{(-)}(\mathbf{r}_2)D_{\mathbf{p}_1, \mathbf{p}_2}(\mathbf{r}_1, \mathbf{r}_2) = \Phi_p^{(-)}(\mathbf{r}_1)\Phi_p^{(-)}(\mathbf{r}_2)d_f(\mathbf{r}_1, \mathbf{r}_2),
\]

where \(\Psi_p^{(-)}(\mathbf{r}) = e^{i\mathbf{p} \cdot \mathbf{r}}\Phi_p^{(-)}(\mathbf{r})\) represents an outgoing electron in a pure Coulombic potential of a nucleus with charge \(Z\). The factor \(D_{\mathbf{p}_1, \mathbf{p}_2}(\mathbf{r}_1, \mathbf{r}_2)\) contains all final state e–e interaction. The 3C model means that the final state correlation is approximately described by

\[
D_{\mathbf{p}_1, \mathbf{p}_2}(\mathbf{r}_1, \mathbf{r}_2) = \Gamma(1 - i\frac{\nu}{p_{12}})e^{-\frac{\pi\nu}{p_{12}}} F_1[i\frac{\nu}{p_{12}}, 1, 1, -i(p_{12}r_{12} + \mathbf{p}_{12} \cdot \mathbf{r}_{12})],
\]

where \(\nu = m\alpha/2\) and \(p_{12} = (\mathbf{p}_1 - \mathbf{p}_2)/2\) (with \(\mathbf{p}_2 = 0\) when single ionization is considered).

We are here discussing the quality of the 3C function in terms of the function \(d_f = \exp[i(\mathbf{p}_1 \cdot \mathbf{r}_1 + \mathbf{p}_2 \cdot \mathbf{r}_2)D_{\mathbf{p}_1, \mathbf{p}_2}]\), which in the limit \(Z \to 0\) (neglecting e–N interaction) describes two electrons with Coulombic interaction. In this discussion our approach is similar to [10]. However, we are able to show explicitly, without making any assumption on the \(D_{\mathbf{p}_1, \mathbf{p}_2}\) function, that the terms which are neglected in 3C are of the order \(Z(m\alpha)^2/E_f\) and higher. In contrast, in [10] it is assumed that the function \(D_{\mathbf{p}_1, \mathbf{p}_2}\) depends only on the relative
coordinate of the two electrons and it is only argued that for $p_{large} \gg Z$ the exact function approaches 3C. We are going a step further.

We now substitute the form Eq. (B1) (with d_f) into the Schrödinger equation

$$\left(-\frac{1}{2m} \nabla_1^2 - \frac{1}{2m} \nabla_2^2 - \frac{Z\alpha}{r_1} - \frac{Z\alpha}{r_2} + \frac{\alpha}{r_{12}} \right) \Psi_f(r_1, r_2) = E_f \Psi_f(r_1, r_2).$$

(B3)

Since $\Phi_p(r)$ is Coulomb wave function, i.e.

$$\Phi_p(r) = N_p \frac{1}{1} \left[\frac{-i}{p} \frac{\partial}{\partial r}, 1, -i(p + p \cdot r) \right],$$

(B4)

where $a = mZ\alpha$, we obtain the equation for the function d_f,

$$\left[-\frac{1}{4m} \nabla_R^2 - \frac{1}{m} \nabla_{12}^2 + \frac{\alpha}{r_{12}} - E_f \right] d_f(r_{12}, R) =$$

$$\left[\frac{2a}{m} (p_1 K_1 + p_2 K_2) - \frac{a}{m} [(M_1 + M_2) \cdot \nabla_R + 2 (M_1 - M_2) \cdot \nabla_{12}] \right] d_f(r_{12}, R).$$

(B5)

The function d_f and the equation Eq. (B5) are written in terms of the (more convenient) relative coordinate r_{12} and the coordinate of the center of mass R of the two electrons,

$$K_i = \frac{1 + \hat{p}_i \cdot \hat{r}_i}{2} H_i, \quad M_i = \frac{\hat{p}_i + \hat{r}_i}{2} H_i.$$

(B6)

H_i is the ratio of confluent hypergeometric functions,

$$H_i = \frac{\frac{1}{1} F_1 \left[1 - i \frac{a}{p_i}, 2, -i(p_i r_i + p_i \cdot r_i) \right]}{\frac{1}{1} F_1 \left[-i \frac{a}{p_i}, 1, -i(p_i r_i + p_i \cdot r_i) \right]},$$

(B7)

which appear after dividing the equation by $\Phi_{p_1} \cdot \Phi_{p_2}$. For $p_i > a$ H_i, and therefore K_i and M_i, are bounded, i.e. $|H_i|, |K_i|, |M_i| \leq 2$ for all distances and angles. This can be shown by writing

$$H_i = \frac{\frac{1}{1} F_1 \left[1 - i \frac{a}{p_i}, 2, -i x \right]}{\frac{1}{1} F_1 \left[-i \frac{a}{p_i}, 1, -i x \right]} = \frac{i}{x} e^{-ix} \frac{\frac{1}{1} F_1 \left[i \frac{a}{p_i}, 2, i x \right]}{\frac{1}{1} F_1 \left[-i \frac{a}{p_i}, 1, -i x \right]} - 1,$$

(B8)

and noting that the numbers in brackets are of unit amplitude, which means that for $x > 1 |H| < 2$. Then it is easy to see numerically that $|H| < 2$ for any x if $a < p$. However, for $a > p$ (as may happen for the slow electron in the SO region) the upper bound on H rises. In numerical calculation we find that maximum of H appears at $ar(1 + \hat{p} \cdot \hat{r}) = 1.445$ which
results in a maximum of the size of \(2/x \sim 2a/1.445p\) [this also follows from Eq. (B8)]. This means that even for \(p\) several times smaller than \(a\) the size of \(H\) is not much bigger than 2.

Due to the boundedness of these functions we can discuss the order of the approximation made by neglecting some terms in Eq. (B5).

In the situations we are considering in this paper the energy \(E_f\) is large: \(E_f \gg a^2/(2m)\). We ask the order of the approximation made by neglecting the e–N interaction completely [putting the righthand side of Eq. (B5) to zero, \(i.e.\ a = 0\)]. Equivalently, we are asking the order of the approximation made by using the 3C function for a two–electron system with \(E_f\) large [note that with \(a = 0\) Eq. (B5) becomes the equation for the free two–electron system].

We assume that for \(E_f\) large the function \(d_f\) does not differ very much from its first order approximation \(d_f^0\). Without any detailed analysis of the neglected terms, we may easily estimate that the order of the approximation made by putting \(a = 0\) in Eq. (B5) is given by the ratio of the neglected (bounded) right side (which is of the order \(ap_{\text{large}}/m\), if we take for simplicity the value of K’s and M’s to be 1) and the bounded term on the left side (which is \(E_f \simeq p_{\text{large}}^2/2m\)). The order of the approximation is \(a/p_{\text{large}}\), which would mean that some terms of this magnitude might have been neglected. It also means that the first order approximation \(d_f^0\) for the function \(d_f\) is the wave function of the free two–electron system. [This conclusion was reached in [10], using the same comparison of the terms, but with additional assumptions as explained above.] This accuracy of \(d_f^0\), and therefore of the 3C function used in our work, would not be sufficient to justify our conclusions. However, making a more detailed analysis, we now show that the order of the neglected terms is in fact \(a\nu/m\) and not \(ap_{\text{large}}/m\) as it seems at first sight. Therefore, the order of the approximation is, in fact, \(a\nu/p_{\text{large}}^2\), and hence the use of the 3C function in our discussions is justified.

We write the exact function \(d_f\) as

\[
d_f = d_f^0 + v_f, \tag{B9}\]

where the first order approximation is the free two–electron wave function

51
\[d_f^0(r_{12}, R) = N_{p_{12}} e^{i(p_1 \cdot r_{12} + p_2 \cdot r_{12})} \, \frac{1}{1} \, \frac{1}{F_1 \left[\frac{\nu}{p_{12}}, 1, -i(p_{12} \cdot r_{12} + p_{12} \cdot r_{12}) \right]}, \]

(B10)

and \(\nu_f \) includes all higher order corrections. Since \(\nu_f \) is small we assume that the next higher order corrections can be obtained by an iterative procedure using Eq. (B9) with Eq. (B5). In lowest order we neglect the right hand side of Eq. (B5) and obtain \(d_f^0 \). Then, in a next iteration we put on the right side \(d_f^0 \) and calculate \(d_f^1 \).

By inserting \(d_f^0 \) for \(d_f \) on the right side of the equation Eq. (B9) we obtain

\[\left[-\frac{1}{4m} \nabla_r^2 - \frac{1}{m} \nabla_{r12}^2 + \frac{\alpha}{r_{12}} - E_f \right] d_f^1(r_{12}, R) = -\frac{4\alpha v}{m} M_{12} \cdot (M_1 - M_2) d_f^0(r_{12}, R), \]

(B11)

where \(M_{12} \), defined similarly to \(M_i \),

\[M_{12} = \frac{p_{12} + r_{12}}{2} \frac{1}{F_1 \left[\frac{i}{p_{12}}, 2, -i(p_{12} \cdot r_{12} + p_{12} \cdot r_{12}) \right]}, \]

(B12)

is also bounded, \(|M_{12}| \leq 2\) if \(p_{12} > \nu \). The corrections to \(d_f^0 \), in the second iteration, are given by the inhomogeneous term on the right side of the Eq. (B11), and we see that this term is of the order \(\alpha v/m \). All terms proportional to the momenta of electrons cancel and the leading correction to \(d_f^0 \) involves both the interaction with the nucleus and the interaction between the two electrons. By neglecting this inhomogeneous term in Eq. (B11) [which leads again to \(d_f^0 \)] we, in fact, neglect terms of the order \(\alpha v/p_{\text{large}}^2 \) in the function \(d_f \). This neglect is valid in all situations considered in this work. However in the SO region, when one of the electrons \((e.g. p_2)\) is slow, the coefficient of these neglected terms can be large (due to large size of \(H_2 \) if \(p_2 \ll a \)). This can influence the accuracy of calculation if a situation \(p_2 \ll a \) is considered. However, when the total cross section is considered (as in this work), the contribution from momenta \(p_2 \ll a \) is suppressed by its small phase space factor.

Therefore all terms of order \(\alpha/p_{\text{large}} \) (first order in \(e-N \) interaction) and all terms of order \(\nu/p_{\text{large}} \) (first order in \(e-e \) interaction) are correctly represented by the 3C function, as we expected, knowing that these terms must be Coulombic (as if the third particle was not present) at the coalescence of the two particles. We have used this result in Sections III, V and VI and VII. This result also means that the spherical waves present in the 3C function

52
are accurate including the first order in a/p_{large} and ν/p_{large}. We need this accuracy of the spherical waves (including first order in ν/p_{large}) in considering the FSI region in Sec. VII.
REFERENCES

[2] The previous paper [1], the present paper and the following paper [3] we will refer to as paper I, II or III, when suitable.

[4] We will call single ionization all photoabsorption processes with one outgoing electron, regardless of the final state of the He$^+$ ion. When the final He$^+$ ion is in an excited (ground) state we call the process single ionization with excitation (without excitation).

[26] Note that the form of the matrix element Eq. (6), from which particular matrix elements
for particular photoabsorption processes (or particular kinematical situations) is derived, is asymmetric in the final state quantum numbers. This form contains the same physics as in the fully symmetric form and is not an approximation. It is derived from the fully symmetric matrix element using the symmetry of the exact wave functions, as explained in the text. However, with the form Eq. (6), the symmetry of the singularities $r_1 = 0$ and $r_2 = 0$ of the integrand Eq. (6) is not manifest, and we will get in some situations the full leading contribution from only one of them, e.g. $r_1 = 0$. In the fully symmetric form of the matrix element any leading contribution comes half from one singularity, the other half from the other singularity. But the result is the same.

[31] Eq. (8) is also the dominant term in the expansion of the initial state wave function in terms of angular momentum l of the electron approaching the nucleus (only the $l = 0$ term is retained). In the case of the ground state of He, the probability to find an electron approaching nucleus with $l = 0$ is dominant, while the probability for higher angular momenta is negligible and is not discussed here for simplicity. These higher angular momenta do not contribute to the order we are interested in this paper. More general partitioning is considered in paper III in connection with photoabsorption from excited states.

[39] We were unable to fully resolve this issue since needed intermediate steps of the numerical calculation of [38] were no longer available. K. Hino (private communication).

[45] Our result $C_Z = 0.030$ for He is consistent with a very recent calculation of R. Krivec, M. Ya. Amusia, and V. B. Mandelzweig, Phys. Rev. A 64, 012713 (2001), performed with very accurate wave functions which also satisfy e–e and e–N Kato cusp conditions exactly. However, their conclusion (that at 100 keV the quasi–free correction is about 10%) is drawn from an expression [their Eq. (6)] which appears to be in error and inconsistent with the rest of their calculations. Corrected (using data from their Table
I, their Eq. (6) gives about a four times bigger quasi-free correction, which is then consistent with our conclusions. Also, using data from their Table I, one obtains $C_Z = 0.033$ for He, which is about 10% above our result. This 10% difference is consistent with their discussion of the sensitivity of C_Z to the accuracy of the wave functions.