next up previous
Next: About this document ... Up: Double ionization of a Previous: 5.1 Figure 1

Bibliography

1
See the recent extensive review of J. H. McGuire, N. Berrah, R. J. Bartlett, J. A. R. Samson, J. A. Tanis, C. L. Cocke and A. S. Schlachter, J. Phys. B 28, 913 (1995).

2
T. Suri{\'{c}}, K. Pisk, B. A. Logan and R. H. Pratt, to be published.

3
R. Dörner, T. Vogt, V. Mergel, H. Khemliche, S. Kravis, C. L. Cocke, J. Ullrich, M. Unverzagt, L. Spielberger, M. Damrau, O. Jakutzki, I. Ali, B. Weaver, K. Ullmann, C. C. Hsu, M. Jung, E. P. Kanter, B. Sonntag, M. H. Prior, E. Rotenberg, J. Denlinger, T. Warwick, S. T. Manson, and H. Schmidt-Böcking, Phys. Rev. Lett. 76, 2654 (1996).

4
S. T. Manson and J. H. McGuire, Phys. Rev. A 51, 400 (1995).

5
A. Dalgarno and A. L. Stewart, Proc. Phys. Soc. London 76, 49 (1960).

6
F. W. Byron, Jr., and C. J. Joachain, Phys. Rev. 164, 1 (1967).

7
T. Åberg Phys. Rev. A 2, 2 (1970).

8
T. Åberg, in Photoionization and Other Probes of Many Electron Interactions, edited by F. J. Wuilleumier (Plenum, New York, 1976) p. 49.

9
M. A. Kornberg and J. E. Miraglia, Phys. Rev. A 52, 2915 (1995).

10
E. G. Drukarev, Phys. Rev. A 51, R2684 (1995).

11
E. G. Drukarev, Phys. Rev. A 52, 3910 (1995).

12
The contribution of this mechanism to the spectrum of outgoing electrons in double ionization was estimated by M. Ya Amusia, E. G. Drukarev, V. G. Gorshkov and M. P. Kazachkov, J. Phys. B 8, 1248 (1975). Its contribution to the double ionization total cross section and its effect on the photoeffect double to single ionization ratio was not discussed in detail. Subsequently, E. G. Drukarev and F. F. Karpeshin, J. Phys. B 8, 399 (1976), discussed the contribution of this mechanism to the double ionization total cross section and calculated its effect on the photoeffect double to single ratio. In this work they extended the discussion to the relativistic region.

13
For further discussion see M. Ya Amusia, Comments At. Mol. Phys. 10, 155 (1981) and ``Atomic Photoeffect'', M. Ya. Amusia, Plenum, New York, 1990 (Chapter 8).

14
We are aware of an attempt by K. Pisk (``Double photoeffect'', Masters thesis, University of Zagreb, Zagreb 1969, in Croatian, unpublished) and by K. Pisk and K. Ilakovac (Proceedings of the Fifth Congress of the Mathematicians, Physicists and Astronomers of Yugoslavia, Book II (Physics), page 97-100, Skopje 1972) to consider double ionization of two K-shell electrons. The analysis is numerical, for photons of 662 keV on Al, Zn and Ag. They present results for differential cross sections with respect to energies and angles of outgoing electrons. It is interesting to note that they consider the equal sharing mechanism as the main mechanism (dominant mechanism) for double ionization. The shake-off mechanism is not considered nor are the results presented in that kinematical region. The total cross sections were not considered.

15
It should be noted that in his paper[10] Drukarev, discussing this mechanism, after extracting the C/p4 behavior (for large relative electron momenta p), used factorized (for example Hartree-Fock) type two electron wave functions in evaluating the constant C. These wave functions in fact do not have the 1/p4 behavior required for the mechanism to contribute significantly. Instead, these functions have 1/p8 behavior (M. A. Kornberg, J. E. Miraglia, T. Suri{\'{c}}, R. H. Pratt, ``Comment on the asymptotic high-energy limit of the ratio of double to single photoionization of helium'', unpublished). However, as clarified later (E. G. Drukarev, private communications) these factorized wave functions are used simply as approximations to the exact wave functions to evaluate integrals which have been derived from expressions which do exhibit the proper 1/p4 behavior. Further aspects of this behavior for the helium ground state wave function and proper approximate wave functions are discussed in E. G. Drukarev, R. H. Pratt, T. Suri{\'{c}}, M. Kornberg, J. Miraglia (to be published).

16
J. A. R. Samson, Z. X. He, R. J. Bartlett, and M. Sagurton, Phys. Rev. Lett. 72, 3329 (1994).

17
L. Spielberger, O. Jakutzki, R. Dörner, J. Ullrich, U. Meyer, V. Mergel, M. Unverzagt, M. Damrau, T. Vogt, I. Ali, Kh. Khayyat, D. Bahr, H. G. Schmidt, R. Frahm, and H. Schmidt-Böcking, Phys. Rev. Lett. 74, 4615 (1995).

18
T. Suri{\'{c}}, K. Pisk and R. H. Pratt, Phys. Lett. A 211, 289 (1996).

19
T. Suri{\'{c}}, in: Proceedings of Indo-US Workshop on Radiation Physics, 1996, Darjeeling, India, to be published.

20
V. L. Yakhontov, private communications; V. L. Yakhontov and M. Ya. Amusia, Phys. Lett. A, accepted for publication.

21
A. Warczak, M. Kucharski, Z. Stachura, H. Geissel, H. Irnich, T. Kandler, C. Kozhuharov, P. H. Mokler, G. Münzenberg, F. Nickel, C. Scheidenberger, Th. Stöhlker, T. Suzuki, P. Rymuza, Nucl. Instrum. Methods, 98, 303 (1995).

22
L. R. Andersson and J. Burgdörfer, Phys. Rev. Lett. 71, 50 (1993);

23
L. R. Andersson and J. Burgdörfer, Phys. Rev. A 50, R2810 (1994).

24
K. Hino, P. M. Bergstrom, Jr., and J. H. Macek, Phys. Rev. Lett. 72, 1620 (1994).

25
P. M. Bergstrom, Jr., K. Hino and J. H. Macek, Phys. Rev. A 51, 3044 (1995).

26
T. Suri{\'{c}}, K. Pisk, B. A. Logan and R. H. Pratt, Phys. Rev. Lett. 73, 790 (1994).

27
M. Ya. Amusia and A. I. Mikhailov, Phys. Lett. A 199, 209 (1995).

28
M. Ya. Amusia and A. I. Mikhailov, J. Phys. B 28, 1723 (1995).

29
M. A. Kornberg and J. E. Miraglia, Phys. Rev. A 53, R3709 (1996).

30
J. C. Levin, G. Bradley Armen and I. A. Sellin, Phys. Rev. Lett. 76, 1220 (1996).

31
L. Spielberger, O. Jakutzki, B. Krässig, U. Meyer, Kh. Khayyat, V. Mergel, Th. Tschentscher, Th. Buslaps, H. Bräuning, R. Dörner, T. Vogt, M. Achler, J. Ullrich, D. S. Gemmell, and H. Schmidt-Böcking, Phys. Rev. Lett. 76, 4685 (1996).

32
R. Wehlitz, R. Hentges, G. Prümper, A. Farhat, T. Buslaps, N. Berrah, J. C. Levin, I. A. Sellin, and U. Becker, Phys. Rev. A 53, R3720 (1996).

33
P. Eisenberger and W. A. Reed, Phys. Rev. B 9, 3237 (1974).

34
R. Ribberfors, Phys. Rev. B 12, 2067 (1975).

35
T. Suri{\'{c}}, P. M. Bergstrom, Jr., K. Pisk, R. H. Pratt, Phys. Rev. Lett. 67, 189 (1991).

36
P. M. Bergstrom, Jr., T. Suri{\'{c}}, K. Pisk, R. H. Pratt, Phys. Rev. A 48, 1134 (1993) and references therein.

37
However, it has been found (Z. Kaliman, T. Suri{\'{c}}, K. Pisk, and R. H. Pratt, to be published) that for the triply differential cross section (when the outgoing electron is also observed) the IA approach is less justified at these energies.

38
J. Wang, J. H. McGuire, J. Burgdörfer and Y. Qiu, Phys. Rev. Lett 77, 1723 (1996).



Eoin Carney
1999-06-14